
Coinduction in Programming

Languages

Davide Sangiorgi

University of Bologna

Email: Davide.Sangiorgi@cs.unibo.it

http://www.cs.unibo.it/˜sangio/

Theme of the talk

– what is coinduction?

– what has been achieved?

page 1

Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

Bisimilarity (∼) :

∪ {R : R is a bisimulation }
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)

page 2

Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

– local, unordered

– infinity in space

Bisimilarity (∼) :

∪ {R : R is a bisimulation }
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)

page 3

Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

– local, unordered

– infinity in space

Bisimilarity (∼) :

∪ {R : R is a bisimulation }

includes ∼ (impredicative)
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)

page 4

Coinduction

Locality + no order :

– “simple” proofs

– avoid the dangers of circularity

cf: paradoxes, like Russel’s

– effective on infinite objects

direct, natural modelling

page 5

Another examples of coinduction: divergence

A Rewriting System

D-invariant: a predicate P s.t.

M ∈ P M −→ M ′

M ′ ∈ P

Divergence (⇑) , ∪ {P : P is a D-invariant }

(coind. definition)

Hence:

M ∈ P P is a D-invariant

M ⇑
(coind. proof principle)

page 6

Tarski

On a complete lattice (i.e., a partial order < with all joins)

Theorem On a complete lattice, a monotone endofunction F

has a complete lattice of post-fixed points

x is post-fixed point of F if x < F (x)

Corollary [coinduction proof principle, à la Tarski]

F monotone x < F (x)

x < gfp (F)

page 7

CONTENTS

☞ • The success of bisimulation and coinduction [8]

• Bits of history [18]

• The final coalgebra approach [26]

• Strenthening coinduction [38]

Bisimulation

– One of the most important contributions of concurrency

theory to CS

– It has spurred the study of coinduction

– In concurrency: the most studied equivalence

∗ ... in a plethora of equivalences (see van Glabbeek 93)

∗ Why?

page 8

Bisimulation in concurrency

– Clear meaning of equality

– Natural

– The finest extensional equality

Extensional: – “whenever it does an output at b

it will also do an input at a”

Non-extensional: – “Has 8 states”

– “Has an Hamiltonian circuit”

– An associated powerful proof technique

– Robust

Characterisations: logical, algebraic, set-theoretical,

categorical, game-theoretical,

– Several separation results from other equivalences
page 9

Basic Process Algebra (BPA)

(cf: context-free grammars)

P ::= a | P1 · P2 | P1 + P2 | X

where X , P

Bisimilarity: decidable (with norm, in polynomial time!)

[Hirshfeld, Jerrum, Moller]

All equivalences "below" bisimilarity (trace, testing, etc.):

undecidable

[Bar-Hillel, Perles, Shamir; Friedman; Groote; Huttel]

page 10

Basic Parallel Processes (BPP)

P ::= a | P1 | P2 | P1 + P2 | X

where X , P

The picture is the same as for BPA

Proofs very unrelated (cf: model checking is decidable for BPA

and undecidable for BPP, Esparza)

page 11

Finite-state processes

Bisimulation: P-complete

[Alvarez, Balcazar, Gabarro, Santha]

With m transitions, n states:

O(m log n) time and O(m + n) space [Paige, Tarjan]

Trace equivalence, testing: PSPACE-complete

[Kannelakis, Smolka; Huynh, Tian]

More generally:

– “local” equivalences: in P

– “non-local” equivalences: PSPACE-complete

page 12

Unique decomposition

(Natural numbers, ∗, 1)

p prime if p 6= 1 and p 6= q ∗ r for Q ∧ R 6= 1

(Processes, |, 0, and an equivalence =)

P prime if P 6= 0 and P 6= Q | R where Q ∧ R 6= 0

Examples: a

b.a

Non-examples (for ∼): a.a (since ∼ a | a)

a. b + b.a (since ∼ a | b)

Theorem Any process can be expressed as the parallel

composition of primes up to bisimilarity [Moller, ...]

Valid for: finite, live finite-state, normed BPA, normed BPP, etc.

page 13

Not possible for other equivalences

an ,
n

︷ ︸︸ ︷
a. · · · . a

Counterexample P , (a + a2) | (a + a2)

Q , a | (a + a2 + a3)

Their traces: a2, a3, a4

Their trees:

P

• •

• • • • •

• • • • •

• •

6∼ Q

• • • •

• • • • • •

• • • •

• •

page 14

Bisimulation in concurrency, today

– To define equality on processes (fundamental!!)

– To prove equalities

∗ even if bisimilarity is not the chosen equivalence

· trying bisimilarity first

· coinductive characterisations of the chosen equivalence

– To justify algebraic laws

– To minimise the state space

– To abstract from certain details

page 15

Coinduction in programming languages

– Bisimilarity in functional languages and OO languages

[Abramsky, Ong]

A major factor in the movement towards operationally-based

techniques in PL semantics in the 90s

– Program analysis (see Nielson, Nielson, Hankin ’s book)

Noninterference (security) properties

– Verification tools: algorithms for computing gfp (for modal

and temporal logics), tactics and heuristics

page 16

– Types [Tofte]

∗ type soundness

∗ coinductive types and definition by corecursion

Infinite proofs in Coq [Coquand, Gimenez]

∗ recursive types (equality, subtyping, ...)

A coinductive rule:

Γ, 〈p1, q1〉 ∼ 〈p2, q2〉 ⊢ pi ∼ qi

Γ ⊢ 〈p1, q1〉 ∼ 〈p2, q2〉

– Recursively defined data types and domains [Fiore, Pitts]

– Databases [Buneman]

page 17

CONTENTS

✓ • The success of bisimulation and coinduction [8]

☞ • Bits of history [18]

• The final coalgebra approach [26]

• Strenthening coinduction [38]

Two concepts here to be tracked down:

– bisimulation

– coinductive principles

(only here the issues of circularity arise)

P

α

∼ Q

α

P ′ ∼ Q′

Γ, 〈p1, q1〉 ∼ 〈p2, q2〉 ⊢ pi ∼ qi

Γ ⊢ 〈p1, q1〉 ∼ 〈p2, q2〉

page 18

3 lines, beginning early 70s

– Computer Science

– Philosophical logic (modal logic)

– Set theory

Common basis:

(weak) homomorphism between algebraic structures

page 19

From homomorphism to bisimulation in
Philosophical logic

Modal logics interpreted on Kripke structures

Homomorphism (on models with a single relation) :

a function F s.t. s
F(s)

t

⇒

s′
F(s′)

t′

Differences with bisimulation

– functional

– no back condition

page 20

When is the truth of a formula preserved when the

model changes?

Theorem Modal formulas are not invariant under

homomorphism

– require an "iff" in the clause (strong homomorphism)

– require a back condition (p-morphism)

[Jongt and Troelstra 1966, Segerberg 1971]

s
F(s)

t

⇔
s′
F(s′)

t′

Theorem Modal formulas are invariant under p-morphism

page 21

A better invariance: p-relations (bisimulations)

[Van Benthem, 76]

Theorem (Van Benthem) A first-order logic formula (over Kripke

structures) is equivalent to a modal formula iff it is bisimulation

invariant

cf: logical characterisation of bisimilarity [Hennessy-Milner, 85]

No coinduction, really

page 22

Computer Science

– Homomorphism (well-known in the 60s)

– Milner, ’71: Simulation between sequential imperative

programs

– Park, ’81: “Concurrency and Automata on Infinite

Sequences”

∗ Bisimulation as a proof technique for language

equivalence on (mild variants of) Buchi automata

∗ A celebrated paper

∗ Still, no coinduction

– Coinduction: Park, while staying at Milner’s

– Immediately adopted by Milner for CCS

page 23

Set-theory

Foundations of set theory (cf: non-well-founded sets)

– Forti, Honsell ’80-83, Hinnion ’80-81

Bisimulations: f-conservative relations, contractions

Coinduction?

∗ yes

∗ a little hidden (more attention to bisimulation equivalences than

bisimulations)

– Aczel ’85-89

nwf sets popular, motivated by Milner’s work on CCS

the basis of the coalgebraic approach to semantics

page 24

Under its most general connotation (as from Tarski)

coinduction in CS existed even earlier

(but not recognised as such)

– Unification

Structural equivalence of graphs [Hopcroft and Ullman ’71]

– Invariant properties (60s, 70s)

A huge literature

Hoare logic: while-statements and weakest preconditions

Connections to fixed-point theory

[Clarke ’77; also De Bakker, De Rover in the 70s]

page 25

CONTENTS

✓ • The success of bisimulation and coinduction [8]

✓ • Bits of history [18]

☞ • The final coalgebra approach [26]

• Strenthening coinduction [38]

Final semantics

[Aczel, Rutten, Turi, Jacobs, Fiore, Plotkin, Lenisa, Honsell, ...]

– Operationally-driven

– The meaning of a program: an F -coalgebra

(F : a functor in a category)

– The mapping onto the final F -coalgebra: the equivalence

induced on terms

∗ Canonical representatives

∗ Universal domain of observations

– If F well-behaved: coinductive techniques

– Dual to the "initial algebra” approach" [ADJ group]

– Insights into the nature of coinduction and the duality with

induction
page 26

Algebras

F (S)

f

S

Intuition:

object S ↔ a set

arrow f ↔ a function over sets

functor F ↔ a signature

An algebra over S tells us how to construct new elements of S

Example:

F (S) = 1 + A × S (A is a given set)

Then f , 〈f1, f2〉

with f1 : 1 7→ S

f2 : A × S 7→ S

The initial algebra: (finite) lists over A
page 27

Coalgebras

S

f

F (S)

A coalgebra over S tells us how to decompose elements in S

(cf: the observations)

page 28

Example

F (S) = A × S

f : s → 〈 head, tail 〉

∈ ∈ ∈

S A S

A coalgebra:

S

f

A × S

– From any s ∈ S we can extract an infinite sequence of

elements in A

– s1 6= s2 may give us the same sequences

– An element of S need not be infinite: ∗

∗ 7→ a × ∗

A × ∗

– The final coalgebra : streams over A
page 29

Corecursion

Example: F (S) = A × S

A+ , streams (final coalgebra)

const(a) , ∗ → a × a × a . . .

∗

∗ 7→ a × ∗

const(a)
A+

<head,tail>

A × ∗
id× const(a)

A × A+

page 30

Bisimulation, coalgebraically

From homomorphim to bisimulation:

S

α

R

γ

π1 π2
T

β

F (S) F (R)
F (π1) F (π2)

F (T)

R ⊆ S × T

page 31

Bisimulation proof principle, coalgebraically

x fin coalg(F) y , equated via the mapping into the final F -coalgebra

The category has terminal object and limits (of ω-chains)

F is a functor (and “behaves well”)

x R y R is an F -bisimulation

x fin coalg(F) y

page 32

Bisimulation proof principle, coalgebraically

x fin coalg(F) y , equated via the mapping into the final F -coalgebra

The category has terminal object and limits (of ω-chains)

F is a functor (and “behaves well”)

x R y R is an F -bisimulation

x fin coalg(F) y

Compare it with the results à la Tarski :

A complete lattice

F monotone

x R y R ⊆ F (R)

x gfp (F) y

page 33

The duality: summary
constructors destructors

inductive def coinductive def

def by recursion def by corecursion

induction technique coinductive technique

congruence bisimulation

inductive predicates invariants

least fixed-points greatest fixed-points

initiality finality

sets non-well-founded sets

strengthening inductive hypothesis coinduction ‘up-to’

page 34

Canonical representatives

Final coalgebras: a domain of canonical representatives

Example:

F (X) = ℘fin (A × X)

Final coalgebra: the set of all finitely-branching trees,

A-labeled, minimal wrt bisimilarity

Any finitely-branching tree, A-labeled tree can be made into a

coalgebra

The mapping of a tree onto the final coalgebra picks up the

canonical representative for the equivalence class of that tree

page 35

•

a a
b

•

a

• •

aa

• • •

•

b b
a

• •

a

•

•

•
a b

•
a

•

• ∈ final coalgebra

page 36

Coalgebras: main drawbacks

– Compositionality

but see Plotkin and Turi

– General coinduction (ie, non-relational)

– What are observations ?

page 37

CONTENTS

✓ • The success of bisimulation and coinduction [8]

✓ • Bits of history [18]

✓ • The final coalgebra approach [26]

☞ • Strenthening coinduction [38]

Redundancies: example

The perfect firewall equation in Ambients

P : a process with n not free in it

νn n〈P 〉 ∼ 0

Proof: Let’s find a bisimulation...

page 38

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

page 39

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

No!

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 R" k〈Q〉 | 0

Try again...

page 40

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

page 41

Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

No!

. . .

Try again...

page 42

The bisimulation:

R , ∪C is a static contexts

{(S, T) : S ∼ C[νn n〈P 〉]

T ∼ C[0] }

C ::= k〈C〉 | P | C | νa C | []

We started with the singleton relation

{(νn n〈P 〉 , 0)}

The added pairs: redundant? (derivable, laws of ∼)

Can we work with relations smaller than bisimulations?

Advantage: fewer and simpler bisimulation diagrams
page 43

Redundant pairs

What we would like to do:

R , R∗ − {some redundant pairs}

P

α

R Q

α

P ′ R∗ Q′

implies R ⊆ ∼

page 44

Redundant pairs

What we would like to do:

R , R∗ − {some redundant pairs}

P

α

R Q

α

P ′ R∗ Q′

implies R ⊆ ∼

A wrong definition of redundant:

S , a set of inference rules valid for ∼

(P,Q) is redundant in (P,Q) ∪ R if

S
R ⊆ ∼

P ∼ Q

page 45

In some cases it works

– Rules for transitivity of ∼ (up-to ∼) [Milner]

P

α

R Q

α

P ′ ∼ P ′′ R Q′′ ∼ Q′

implies R ⊆∼

Warning: in some cases it does not work,

even though ∼ is transitive

page 46

In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

[Sangiorgi]

P

α

R Q

α

C" [P ′] R C" [Q′]

implies R ⊆∼

Warning: in some cases it does not work,

even though the contexts preserve ∼

page 47

In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

– rules for invariance of ∼ under injective substitutions

(up-to injective substitutions)

P

α

R Q

α

P ′σ R Q′σ

σ: an injective function σ

implies R ⊆∼

page 48

Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

page 49

Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q | νn n〈P 〉 〉 k〈Q | 0〉

page 50

Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q |νn n〈P 〉 〉" R k〈Q | 0〉"
[Merro, Zappa Nardelli ’03]

“up-to ∼” and “up-to context” (NB: need also: “up-to injective

substitutions”, with a different composition)
page 51

