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Theme of the talk

– what is coinduction?

– what has been achieved?
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Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

Bisimilarity (∼) :

∪ {R : R is a bisimulation }
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)
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Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

– local, unordered

– infinity in space

Bisimilarity (∼) :

∪ {R : R is a bisimulation }
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)
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Equality on processes, coinductively

Bisimulation:

A relation R s.t. P

α

R Q

α

P ′ R Q′

– local, unordered

– infinity in space

Bisimilarity (∼) :

∪ {R : R is a bisimulation }

includes ∼ (impredicative)
(coind. definition)

Hence:

x R y R is a bisimulation

x ∼ y
(coind. proof principle)
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Coinduction

Locality + no order :

– “simple” proofs

– avoid the dangers of circularity

cf: paradoxes, like Russel’s

– effective on infinite objects

direct, natural modelling
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Another examples of coinduction: divergence

A Rewriting System

D-invariant: a predicate P s.t.

M ∈ P M −→ M ′

M ′ ∈ P

Divergence (⇑) , ∪ {P : P is a D-invariant }

(coind. definition)

Hence:

M ∈ P P is a D-invariant

M ⇑
(coind. proof principle)
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Tarski

On a complete lattice (i.e., a partial order < with all joins)

Theorem On a complete lattice, a monotone endofunction F

has a complete lattice of post-fixed points

x is post-fixed point of F if x < F (x)

Corollary [coinduction proof principle, à la Tarski]

F monotone x < F (x)

x < gfp (F )
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Bisimulation

– One of the most important contributions of concurrency

theory to CS

– It has spurred the study of coinduction

– In concurrency: the most studied equivalence

∗ ... in a plethora of equivalences (see van Glabbeek 93)

∗ Why?

page 8



Bisimulation in concurrency

– Clear meaning of equality

– Natural

– The finest extensional equality

Extensional: – “whenever it does an output at b

it will also do an input at a”

Non-extensional: – “Has 8 states”

– “Has an Hamiltonian circuit”

– An associated powerful proof technique

– Robust

Characterisations: logical, algebraic, set-theoretical,

categorical, game-theoretical, ....

– Several separation results from other equivalences
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Basic Process Algebra (BPA)

(cf: context-free grammars)

P ::= a | P1 · P2 | P1 + P2 | X

where X , P

Bisimilarity: decidable (with norm, in polynomial time!)

[Hirshfeld, Jerrum, Moller]

All equivalences "below" bisimilarity (trace, testing, etc.):

undecidable

[Bar-Hillel, Perles, Shamir; Friedman; Groote; Huttel]
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Basic Parallel Processes (BPP)

P ::= a | P1 | P2 | P1 + P2 | X

where X , P

The picture is the same as for BPA

Proofs very unrelated (cf: model checking is decidable for BPA

and undecidable for BPP, Esparza)
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Finite-state processes

Bisimulation: P-complete

[Alvarez, Balcazar, Gabarro, Santha]

With m transitions, n states:

O(m log n) time and O(m + n) space [Paige, Tarjan]

Trace equivalence, testing: PSPACE-complete

[Kannelakis, Smolka; Huynh, Tian]

More generally:

– “local” equivalences: in P

– “non-local” equivalences: PSPACE-complete
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Unique decomposition

(Natural numbers, ∗, 1)

p prime if p 6= 1 and p 6= q ∗ r for Q ∧ R 6= 1

(Processes, |, 0, and an equivalence =)

P prime if P 6= 0 and P 6= Q | R where Q ∧ R 6= 0

Examples: a

b.a

Non-examples (for ∼): a.a (since ∼ a | a)

a. b + b.a (since ∼ a | b)

Theorem Any process can be expressed as the parallel

composition of primes up to bisimilarity [Moller, ...]

Valid for: finite, live finite-state, normed BPA, normed BPP, etc.
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Not possible for other equivalences

an ,
n

︷ ︸︸ ︷
a. · · · . a

Counterexample P , (a + a2) | (a + a2)

Q , a | (a + a2 + a3)

Their traces: a2, a3, a4

Their trees:

P

• •

• • • • •

• • • • •

• •

6∼ Q

• • • •

• • • • • •

• • • •

• •
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Bisimulation in concurrency, today

– To define equality on processes (fundamental!!)

– To prove equalities

∗ even if bisimilarity is not the chosen equivalence

· trying bisimilarity first

· coinductive characterisations of the chosen equivalence

– To justify algebraic laws

– To minimise the state space

– To abstract from certain details
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Coinduction in programming languages

– Bisimilarity in functional languages and OO languages

[Abramsky, Ong]

A major factor in the movement towards operationally-based

techniques in PL semantics in the 90s

– Program analysis (see Nielson, Nielson, Hankin ’s book)

Noninterference (security) properties

– Verification tools: algorithms for computing gfp (for modal

and temporal logics), tactics and heuristics

page 16



– Types [Tofte]

∗ type soundness

∗ coinductive types and definition by corecursion

Infinite proofs in Coq [Coquand, Gimenez]

∗ recursive types (equality, subtyping, ...)

A coinductive rule:

Γ, 〈p1, q1〉 ∼ 〈p2, q2〉 ⊢ pi ∼ qi

Γ ⊢ 〈p1, q1〉 ∼ 〈p2, q2〉

– Recursively defined data types and domains [Fiore, Pitts]

– Databases [Buneman]
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Two concepts here to be tracked down:

– bisimulation

– coinductive principles

(only here the issues of circularity arise)

P

α

∼ Q

α

P ′ ∼ Q′

Γ, 〈p1, q1〉 ∼ 〈p2, q2〉 ⊢ pi ∼ qi

Γ ⊢ 〈p1, q1〉 ∼ 〈p2, q2〉
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3 lines, beginning early 70s

– Computer Science

– Philosophical logic (modal logic)

– Set theory

Common basis:

(weak) homomorphism between algebraic structures
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From homomorphism to bisimulation in
Philosophical logic

Modal logics interpreted on Kripke structures

Homomorphism (on models with a single relation ) :

a function F s.t. s
F(s)

t

⇒

s′
F(s′)

t′

Differences with bisimulation

– functional

– no back condition
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When is the truth of a formula preserved when the

model changes?

Theorem Modal formulas are not invariant under

homomorphism

– require an "iff" in the clause (strong homomorphism)

– require a back condition (p-morphism)

[Jongt and Troelstra 1966, Segerberg 1971]

s
F(s)

t

⇔
s′
F(s′)

t′

Theorem Modal formulas are invariant under p-morphism
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A better invariance: p-relations (bisimulations)

[Van Benthem, 76]

Theorem (Van Benthem) A first-order logic formula (over Kripke

structures) is equivalent to a modal formula iff it is bisimulation

invariant

cf: logical characterisation of bisimilarity [Hennessy-Milner, 85]

No coinduction, really
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Computer Science

– Homomorphism (well-known in the 60s)

– Milner, ’71: Simulation between sequential imperative

programs

– Park, ’81: “Concurrency and Automata on Infinite

Sequences”

∗ Bisimulation as a proof technique for language

equivalence on (mild variants of) Buchi automata

∗ A celebrated paper

∗ Still, no coinduction

– Coinduction: Park, while staying at Milner’s

– Immediately adopted by Milner for CCS
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Set-theory

Foundations of set theory (cf: non-well-founded sets)

– Forti, Honsell ’80-83, Hinnion ’80-81

Bisimulations: f-conservative relations, contractions

Coinduction?

∗ yes

∗ a little hidden (more attention to bisimulation equivalences than

bisimulations)

– Aczel ’85-89

nwf sets popular, motivated by Milner’s work on CCS

the basis of the coalgebraic approach to semantics
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Under its most general connotation (as from Tarski)

coinduction in CS existed even earlier

(but not recognised as such)

– Unification

Structural equivalence of graphs [Hopcroft and Ullman ’71]

– Invariant properties (60s, 70s)

A huge literature

Hoare logic: while-statements and weakest preconditions

Connections to fixed-point theory

[Clarke ’77; also De Bakker, De Rover in the 70s]
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Final semantics

[Aczel, Rutten, Turi, Jacobs, Fiore, Plotkin, Lenisa, Honsell, ...]

– Operationally-driven

– The meaning of a program: an F -coalgebra

(F : a functor in a category)

– The mapping onto the final F -coalgebra: the equivalence

induced on terms

∗ Canonical representatives

∗ Universal domain of observations

– If F well-behaved: coinductive techniques

– Dual to the "initial algebra” approach" [ADJ group]

– Insights into the nature of coinduction and the duality with

induction
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Algebras

F (S)

f

S

Intuition:

object S ↔ a set

arrow f ↔ a function over sets

functor F ↔ a signature

An algebra over S tells us how to construct new elements of S

Example:

F (S) = 1 + A × S (A is a given set)

Then f , 〈f1, f2〉

with f1 : 1 7→ S

f2 : A × S 7→ S

The initial algebra: (finite) lists over A
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Coalgebras

S

f

F (S)

A coalgebra over S tells us how to decompose elements in S

(cf: the observations)
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Example

F (S) = A × S

f : s → 〈 head, tail 〉

∈ ∈ ∈

S A S

A coalgebra:

S

f

A × S

– From any s ∈ S we can extract an infinite sequence of

elements in A

– s1 6= s2 may give us the same sequences

– An element of S need not be infinite: ∗

∗ 7→ a × ∗

A × ∗

– The final coalgebra : streams over A
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Corecursion

Example: F (S) = A × S

A+ , streams (final coalgebra)

const(a) , ∗ → a × a × a . . .

∗

∗ 7→ a × ∗

const(a)
A+

<head,tail>

A × ∗
id× const(a)

A × A+
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Bisimulation, coalgebraically

From homomorphim to bisimulation:

S

α

R

γ

π1 π2
T

β

F (S) F (R)
F (π1) F (π2)

F (T )

R ⊆ S × T
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Bisimulation proof principle, coalgebraically

x fin coalg(F ) y , equated via the mapping into the final F -coalgebra

The category has terminal object and limits (of ω-chains)

F is a functor (and “behaves well”)

x R y R is an F -bisimulation

x fin coalg(F ) y
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Bisimulation proof principle, coalgebraically

x fin coalg(F ) y , equated via the mapping into the final F -coalgebra

The category has terminal object and limits (of ω-chains)

F is a functor (and “behaves well”)

x R y R is an F -bisimulation

x fin coalg(F ) y

Compare it with the results à la Tarski :

A complete lattice

F monotone

x R y R ⊆ F (R)

x gfp (F ) y
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The duality: summary
constructors destructors

inductive def coinductive def

def by recursion def by corecursion

induction technique coinductive technique

congruence bisimulation

inductive predicates invariants

least fixed-points greatest fixed-points

initiality finality

sets non-well-founded sets

strengthening inductive hypothesis coinduction ‘up-to’
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Canonical representatives

Final coalgebras: a domain of canonical representatives

Example:

F (X) = ℘fin (A × X)

Final coalgebra: the set of all finitely-branching trees,

A-labeled, minimal wrt bisimilarity

Any finitely-branching tree, A-labeled tree can be made into a

coalgebra

The mapping of a tree onto the final coalgebra picks up the

canonical representative for the equivalence class of that tree

page 35



•

a a
b

•

a

• •

aa

• • •

•

b b
a

• •

a

•

•

•
a b

•
a

•

• ∈ final coalgebra
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Coalgebras: main drawbacks

– Compositionality

but see Plotkin and Turi

– General coinduction (ie, non-relational)

– What are observations ?
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Redundancies: example

The perfect firewall equation in Ambients

P : a process with n not free in it

νn n〈P 〉 ∼ 0

Proof: Let’s find a bisimulation...
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Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }
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Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

No!

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 R" k〈Q〉 | 0

Try again...
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Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }
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Is this a bisimulation?

R , { (νn n〈P 〉 , 0) }

∪k,Q { (k〈Q | νn n〈P 〉 〉 , k〈Q〉 | 0) }

No!

. . .

Try again...
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The bisimulation:

R , ∪C is a static contexts

{(S, T ) : S ∼ C[νn n〈P 〉 ]

T ∼ C[0] }

C ::= k〈C〉 | P | C | νa C | [ ]

We started with the singleton relation

{(νn n〈P 〉 , 0)}

The added pairs: redundant? (derivable, laws of ∼)

Can we work with relations smaller than bisimulations?

Advantage: fewer and simpler bisimulation diagrams
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Redundant pairs

What we would like to do:

R , R∗ − {some redundant pairs}

P

α

R Q

α

P ′ R∗ Q′

implies R ⊆ ∼
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Redundant pairs

What we would like to do:

R , R∗ − {some redundant pairs}

P

α

R Q

α

P ′ R∗ Q′

implies R ⊆ ∼

A wrong definition of redundant:

S , a set of inference rules valid for ∼

(P,Q) is redundant in (P,Q) ∪ R if

S
R ⊆ ∼

P ∼ Q
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼) [Milner]

P

α

R Q

α

P ′ ∼ P ′′ R Q′′ ∼ Q′

implies R ⊆∼

Warning: in some cases it does not work,

even though ∼ is transitive
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

[Sangiorgi]

P

α

R Q

α

C" [P ′] R C" [Q′]

implies R ⊆∼

Warning: in some cases it does not work,

even though the contexts preserve ∼
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In some cases it works

– Rules for transitivity of ∼ (up-to ∼)

– rules for substitutivity of ∼ (up-to context)

– rules for invariance of ∼ under injective substitutions

(up-to injective substitutions)

P

α

R Q

α

P ′σ R Q′σ

σ: an injective function σ

implies R ⊆∼
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Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0
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Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q | νn n〈P 〉 〉 k〈Q | 0〉
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Proof of the firewall, composition up-to
techniques

We can prove νn n〈P 〉 ∼ 0 using the singleton relation

νn n〈P 〉

enter k〈Q〉

R 0

enter k〈Q〉

k〈Q | νn n〈P 〉 〉 k〈Q〉 | 0

∼ ∼

k〈Q |νn n〈P 〉 〉" R k〈Q | 0〉"
[Merro, Zappa Nardelli ’03]

“up-to ∼” and “up-to context” (NB: need also: “up-to injective

substitutions”, with a different composition)
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