INTERACTING HOPF ALGEBRAS THE THEORY OF LINEAR SYSTEMS

FILIPPO BONCHI UNIVERSITY OF PISA

Fabio Zanasi UCL

Jens Seeber IMT Lucca

Collaborators

Dusko Pavlovic Hawai'i

Robin Piedeleu Oxford

Pawel Sobocinski Southampton

Josh Holland Southampton

I. INTERACTING HOPF ALGEBRAS

II. CONTROVERSIAL INTERMEZZO

III. RAMIFICATIONS

Numeral Systems

Roman numbers are quite inconvenient to perform the elementary arithmetic operations

In Liber Abbaci (1201), Fibonacci introduce in Europe the Arab numeral system together with the basic algorithm

In 1280, the city of Florence forbade the use of Arab ciphers

Nowadays, the introduction of Arab numbers is considered a fundamental moment in the History of Science

Equations

In *The Whetstone of Witte* (1557), Robert Recorde introduced the symbol =

$$14x + 15 = 71$$

Sign P R R R R R R R R R R R R	Wording dragma, numerus radix zensus (census) cubus zensdezens sursolidum zensicubus bissursolidum zenszensdezens cubus de cubo	Meaning the number, the absolute term the root, the unknown, x the square, x ² the cube, x ³ the fourth power, x ⁴ the fifth power, x ⁵ the sixth power, x ⁶ the seventh power, x ⁷ the eighth power, x ⁸ the ninth power, x ⁹
---	---	--

Polynomials

Our notation for polynomials was introduced by Descartes in *La Géometrie* (1637)

After we started writing x², x³,... xⁿ, we could think about x⁻² or x^{0.5}

Network diagrams

Electrical Circuits

Bayesian Networks

Signal Flow Graphs

Quantum Processes

Petri Nets

Compositional Semantics

Diagrammatic languages are not really made of syntax.

We are able to describe the behaviour of the whole systems

But not the behaviour of the single components

The behaviour of the whole system should be "reducible" to the behaviour of its components

Compositional Modelling

There is an emerging, multi-disciplinary field aiming at studying different sorts of networks **compositionally**, inspired by the **algebraic methods** of programming language semantics.

Diagrams are first-class citizens of the theory. The appropriate algebraic setting is **monoidal** (and not **cartesian**) categories.

More and more influential

The Future Will Be Formulated Using Category Theory

Jayshree Pandya Contributor COGNITIVE WORLD Contributor Group ①

AI & Big Data

Jayshree Pandya is Founder of Risk Group & Host of Risk Roundup.

A new approach to defining and designing systems is coming.

https://www.forbes.com/sites/cognitiveworld/2019/07/29/the-future-will-be-formulated-using-category-theory/#71a09469625e

Signal Flow Graphs

Signal Flow Graphs are **stream** processing circuits widely adopted in Control Theory and Signal Processing

Claude Shannon. The theory and design of linear differential equation machines (1942).

Signal Flow Graphs

String Diagrammatic Syntax

Subject to the laws of PROPs

Functional Circuits

We can represent polynomial

$$p = k_0 + k_1 x + \dots + k_n x^n$$

as

Hereafter denoted by

Polynomial Matrices

The denotational semantics of functional circuits is given by the PROP morphism

$$\overrightarrow{\llbracket \cdot \rrbracket} \colon \overrightarrow{\mathsf{Circ}} \to \mathsf{Mat}_{k[x]}$$

defined inductively as follows

where ! and? are the unique morphism given by initiality and finality of 0

Example

Hopf Algebras

The theory \mathbb{HA} is \overrightarrow{Circ} quotiented by the following axioms

Soundness and Completeness

 $\mathbb{H}\mathbb{A}$ is isomorphic to $\mathsf{Mat}_{\mathsf{k}[x]}$

$$\overrightarrow{\llbracket c \rrbracket} = \overrightarrow{\llbracket d \rrbracket} \Longleftrightarrow c \overset{\mathbb{H}\mathbb{A}}{=} d$$

Cofunctional Circuits

The denotational semantics $[\![\cdot]\!]: \overleftarrow{\mathsf{Circ}} o \mathsf{Mat}_{k[x]}^{op}$ is given by duality

The theory $\mathbb{H}\mathbb{A}^{op}$ is $\overleftarrow{\mathsf{Circ}}$ quotiented by the following axioms

$$= \boxed{0}$$

$$= Id_0$$

Semantics of Generalised Circuits

When we allow combinations of functional and co-functional circuits (like in feedbacks) we may get *relational* behaviours:

For instance, $\bullet \sigma$; $\sigma \bullet \sigma$ expresses the diagonal relation

Moreover, polynomials are not enough: we need *fractions* of polynomials.

$$k[x] \mapsto k(x) \mapsto k((x))$$

polynomials

fractions of polynomials

Laurent series

Semantics of Generalised Circuits

The denotational semantics of circuits is given by the PROP morphism

$$\llbracket \cdot \rrbracket \colon \mathsf{Circ} \to \mathsf{LinRel}_{\mathsf{k}((x))}$$

defined as follows

Interacting Hopf Algebras

The theory IH is Circ quotiented by the axioms of HA, HA^{op} and the following

Soundness and Completeness

The proof exploits a technique introduced by Steve Lack in Composing PROPs (2004)

$$[\![c]\!] = [\![d]\!] \Longleftrightarrow c \stackrel{\mathbb{IH}}{=} d$$

Kleene's Theorem

Bonchi, Sobocinski, Zanasi Interacting Hopf Algebras Journal of Pure and Applied Algebra (2017)

III is isomorphic to $LinRel_{k(x)}$

Equational Reasoning

Proof that two diagrams represent the same dynamical system:

Actually, this holds in general:

Normal Form

any circuits is equivalent to one in Circ with a feedback loop

The analogue of Bohm-Jacopini's Theorem

Equational Reasoning

From a specification (a rational fraction) to its implementation as a linear dynamical system.

Flow direction is FUNDAMENTAL

"flow graphs differ from electrical network graphs in that their branches are directed. In accounting for branch directions it is necessary to take an entirely different line of approach from that adopted in electrical network topology."

S.J. Mason. Feedback Theory: I. Some Properties of Signal Flow Graphs. 1953

Flow direction is EVIL

"Adding a signal flow direction is often a figment of one's imagination, and when something is not real, it will turn out to be cumbersome sooner or later. [...] The input/output framework is totally inappropriate for dealing with all but the most special system interconnections. [The input/output representation] often needlessly complicates matters, mathematically and conceptually. A good theory of systems takes the behavior as the basic notion."

J. Willems. Linear systems in discrete time. 2009

Flow directionality

Circ does not rely on flow directionality as a primitive

This allows for a more flexible syntax, disclosing a rich and elegant mathematical playground: IIII

Whenever flow directionality matters, we can always rewrite an circuit in its normal form

"The reason why sysics has ceased to look for causes is that in fact there are no such things. The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm."

(Bertrand Russel - 1913)

Graphical Linear Algebra

For dynamical systems, we need the field of fractions of polynomials, but actually the theorem holds for any field

This allows to *re*prove well-known theorems of linear algebra by means of our axioms

You can find many examples in the blog: https://graphicallinearalgebra.net

Equational Proof

Proposition: a matrix A is injective iff its kernel is 0.

Proof

Cartesian and Abelian Bicategories

Switching black and white colouring does not change the axiomatisation

To axiomatise the inclusion relation is enough to add

$$\bigcirc$$
 \leq \bigcirc

It turns out that III is an Abelian bicategory (Carboni-Walters)

Bonchi, Holland, Pavlovic, Sobocinski. Refinement for Signal Flow Graphs. CONCUR 2017

Petri Nets

Instead of a field, pick a semiring without additive inverses: the set N of natural numbers.

Because N does not have additive inverses, it is suitable to model **resources** in a distributed system.

We interpret the place of a Petri net as a N-circuit diagram

Petri Nets

dove

Equational Theory

AR: Algebra of Resources

Bonchi, Holland, Piedeleu, Sobocinski, Zanasi - Diagrammatic Algebra: From Linear to Concurrent Systems, POPL, 2019.

What are the Fundamental Structures of Concurrency? We still don't know!

Samson Abramsky 1,2

$$-n$$
 $-n$ $-n$ $-n$ $-n$

Non Passive Electrical Circuits

Encode electrical circuits as circuit diagrams

Bonchi, Piedeleu, Sobocinski, Zanasi - Graphical Affine Algebra, LICS 2019.

Equational Reasoning with Electrical Circuits

Proof that parallel voltage sources of different voltages are disallowed.

Other References

On Interacting Hopf Algebras

Fabio Zanasi - Interacting Hopf Algebras (ENS-Lyon, 2015)

On the Algebra of Resources

Robin Piedeleu - Picturing resources in concurrency (Oxford, 2019)

On Flow Directionality

- Bonchi, Sobocinski, Zanasi Full Abstraction for Signal Flow Graphs, POPL, 2015.
- Bonchi, Sobocinski, Zanasi The Calculus of Signal Flow Diagrams I: Linear Relations on Streams, Information and Computation, 2017.

On Cartesian Bicategories

- Filippo Bonchi, Dusko Pavlovic, Pawel Sobocinski Functorial Semantics for Relational Theories, CoRR abs/1711.08699, 2017.
- Filippo Bonchi, Jens Seeber, Pawel Sobocinski Graphical Conjunctive Queries, CSL, 2018.

