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N a nutshell

 We develop a categorical approach to Bayesian
probability theory.

 Our methodology is driven by programming language
semantics.

|t offers a principled, compositional way of performing
the fundamental Bayesian reasoning tasks, such as
inference and learning.
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Inference questions P(1)

What is the a priori probability of a positive test?
P(t|s)

What is the probability of a positive test given the symptoms?
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State w € D(X) State of affairs

Observation,

Predicate [OF X — [0,1] (fUZZY) event

Conditioning w|p € D(X) Revision dug to
an observation
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State trans

Predicate tra Continuous case: kl(G)

states are probability measures, predicates are
measurable functions to [0,1].

Quantum case: vNAC°P
states are...quantum states, predicates are effects.

These notions make sense in other categories as well.
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Bayesian Networks in Kleisl

We interpret a Bayesian network as an arrow of kl(D).
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Bayesian Inference in Kleisli

Both Bayesian networks and our toolbox live in ki(D).
We shall now compute the two inference questions in k(D).

The calculation will have a "dynamical’ flavour:
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Bayesian Inference in Kleisl

Inference question | What is the a priori probability of a positive test?

GQFLE D T
1 o>—2G®2E O>—2D o>—2T

\O/ % Pos [est

T>D>(GQE)

2

t— 1

tLt— O

1.Consider state GQE € D(2:Q2k)

2.Use channel T and D as state transformers
T>D>(GQRE) € D(2r)

3.Consider the predicate PosTest. 2r— [0,1]
4.Answer is the conditioned state (T>>D>(GQE))prostest € D(27)
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Bayesian Inference in Kleisl

Inference question Il What is the probability of a positive test given the symptoms?
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Bayesian Inference in Kleisli
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The two questions show that siblings can influence each others.
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Blocking Influence

But this influence can be blocked. The channel language
IS able to express and formally prove it.
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INnfluence: overview

 More generally, the channel language allows to
prove the three d-separation scenarios as
formal statements.

* Influence can be formally quantified, via a (total
variation) distance between states.
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Back to inference

Predicate/state transformation in kl(D) offers a novel,
dynamical style of performing Bayesian inference.
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In kI(D) we can reproduce also a more traditional
account of Bayesian inference, in which belief revision
IS performed on the whole joint distribution.
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Back to inference
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Inference questions

What is the a priori What is the probability of a
probability of a positive test? positive test given the symptoms?
Answer: Answer:

|\/|4(a)‘(ld ® ld ® Id ® PosTest ® Id)) M4(w‘(|d ® Id ® Id ® PosTest ® ObS)/))

N
N\

\\

Fourth marginal
(positive test node)
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Back to inference

e |t turns out the two styles of inference are provably
equivalent.

* This can be made formally precise with
disintegration: the process of factorising a given joint
state into a Bayesian network.

L ey
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