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A sequential interactive computation is a Turing machine 
(TM) computation that continuously interacts with its 
environment by alternately accepting an input string on the 
input-tape and computing on the work-tape a corresponding 
output string to be delivered on the output-tape. 

An interactive computations can be modelled as a sequence 
possibly infinite, of non-deterministic 3-tape TMs. 

Interactive computation
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In 2004, Scott A. Smolka worked with Dina Goldin and 
colleagues on a formal framework for interactive 
computing. 
  

The persistent Turing machine (PTM) is a 3-tape Turing 
machine dealing with persistent sequential interactive 
computations. 

Persistent Turing machine
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Persistent Turing machine at work

A PTM is a 3-tapes TM that performs an infinite sequence of classical 
computation. It is based on dynamic stream semantics. A computation is 
called sequential interactive computation because it continuously interacts 
with its environment by alternately accepting an input string on the input-tape 
and computing on the  work-tape a corresponding output string to be 
delivered on the output-tape.  The computation is persistent, meaning that the 
content of the work-tape persists from one computation step to the next by 
ensuring a memory function. 
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Fig. 1. Illustration of PTM macrosteps.

“its own” macrostep. With persistence, an input token can affect all subsequent macrosteps; this
property is known as history dependence.

Our treatment of PTMs proceeds along the following lines. We first formalize the notions of
interaction and persistence in PTMs in terms of the persistent stream language (PSL) of a PTM
(Sections 2 and 3). Given a PTM, its persistent stream language is coinductively defined to be the
set of infinite sequences (interaction streams) of pairs of the form (wi,wo ) representing the input
and output strings of a single PTM computation step. Persistent stream languages induce a natural,
stream-based notion of equivalence for PTMs. Decider PTMs are an important subclass of PTMs;
a PTM is a decider if it does not have divergent (non-halting) computations (Definitions 6 and 11).

We then define a very general kind of effective transition system called an interactive transition
system (ITS), and equip ITSs with three notions of behavioral equivalence: ITS isomorphism, inter-
active bisimulation, and interactive stream equivalence (Section 4). We show that ITS isomorphism
refines interactive bisimulation, and interactive bisimulation refines interactive stream equivalence.

Our first result concerning ITSs is that the class of ITSs is isomorphic to the class of PTMs,
thereby allowing one to view PTMs as ITSs “in disguise” (Section 5). A similar result is established
for decider PTMs and decider ITSs. These results address a question heretofore left unanswered
concerning the relative expressive power of Turing machines and transition systems. Until now,
the emphasis has been on showing that various kinds of process algebras, with transition-sys-
tem semantics, are capable of simulating Turing machines in lock-step [6–11]. The other direction,
namely—What extensions are required of Turing machines so that they can simulate transitions
systems?—is answered by our results.

We also define an infinite hierarchy of successively finer equivalences for PTMs over finite in-
teraction-stream prefixes and show that the limit of this hierarchy does not coincide with PSL-
equivalence (Section 6). The presence of this “gap” can be attributed to the fact that the transition
systems corresponding to PTM computations naturally exhibit unbounded nondeterminism. This is
an important phenomenon for specification; for example, modeling unbounded nondeterminism
is crucial for supporting refinement between dialects of timed and untimed CSP [12]. In contrast, it
is well known that classical Turing-machine computations have bounded nondeterminism, i.e., any
nondeterministic TM can produce only a finite number of distinct outputs for a given input string.
We note that this gap is not present for decider PTMs (Section 7).

We further introduce the class of amnesic PTMs and a corresponding notion of amnesic stream
languages (ASL) (Section 8). In this case, the PTM begins each new computation with a blank work
tape. We show that the class of ASLs is strictly contained in the class of PSLs. We additionally show
that ASL-equivalence coincides with the equivalence induced by considering interaction-stream
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Abstract

This paper presen
ts persist

ent Turing machines (PTMs), a new way of interpreting Turing-machine compu-

tation, based on dynamic stream semantics. A
PTM is a Turing machine that performs an infinite sequence of

“normal” Turing machine computations, where each such computation starts when the PTM reads an input

from its input tape and ends when the PTM produces an output on its output tape. The PTM has an additional

worktape, which retains its content from one computation to the next; this is what we mean by persist
ence.

A number of results are presen
ted for this model, including a proof that the class of PTMs is isomorphic

to a general class of effect
ive transition systems called interactive

transition systems; and a proof that PTMs

without persist
ence (amnesic PTMs) are less expressiv

e than PTMs. As an analogue of the Church-Turing

hypothesis which relates Turing machines to algorithmic computation, it is hypothesized
that PTMs capture

the intuitive notion of sequential interactive
computation.
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Preface

Interaction was a common theme in the research of Paris Kanellakis. His doctoral dissertationexplored the computational complexity of concurrency control in distributed databases. Later, hisresearch interests included object-oriented and constraint databases, complexity issues in processalgebra and other formalisms for concurrent systems, and fault-tolerant parallel algorithms. Giventhat interaction is a hallmark of each of these areas and that the second author (Smolka) was Paris’sfirst Ph.D. student and the first author (Goldin) was one of his last Ph.D. students, a paper on aformal framework for interactive computing seems appropriate for the special issue of Informationand Computation commemorating the anniversary of Paris’s 50th birthday. A preliminary versionof this paper appeared in [1].

1. Introduction

A number of researchers have observed that the Turing-machine model of computation, thefocus of which is on a theory of computable functions, falls short when it comes to modeling moderncomputing systems, whose hallmarks are interaction and reactivity. Milner, in his Turing Awardlecture [2], asserts that:

Through the seventies, I became convinced that a theory of concurrency and interactionrequires a new conceptual framework, not just a refinement of what we find natural forsequential computing.

In [3], van Leeuwen states:

. . . the classical Turing paradigm may no longer be fully appropriate to capture all fea-tures of present-day computing.
Wegner [4,5] has conjectured that interactive models of computation are more expressive than “al-gorithmic” ones such as Turing machines. It would therefore be interesting to see what extensionsare necessary to Turing machines to capture the salient aspects of interactive computing. More-over, it would be desirable if the alterations made to the classical model could in some sense be keptminimal.

Motivated by these goals, we investigate a new way of interpreting Turing-machine computa-tion, one that is both interactive and persistent. In particular, we present persistent Turing machines(PTMs). A PTM is a nondeterministic 3-tape Turing machine (N3TM) with a read-only input tape, aread/write work tape, and a write-only output tape. Upon receiving an input token from its environ-ment on its input tape, a PTM computes for a while and then outputs the result to the environmenton its output tape, and this process is repeated forever. A PTM performs persistent computations inthe sense that a notion of “memory” (work-tape contents) is maintained from one computation stepto the next, where each PTM computation step represents an N3TM computation. Fig. 1 illustratesthe first two steps of a PTM computation.
Persistence extends the effect of inputs. An input token affects the computation of its correspond-ing macrostep, including the work tape. The work tape in turn affects subsequent computation steps.If the work tape were erased, then the input token could not affect subsequent macrosteps, but only
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1 Introduction

In 2004, Scott A. Smolka worked with Dina Goldin 3 and colleagues on a formal
framework for interactive computing; the persistent Turing machine (PTM) was
at the heart of their formalization [1,2,3]. A PTM is a Turing machine (TM)
dealing with persistent sequential interactive computation a class of computa-
tions that are sequences (possibly infinite) of non-deterministic 3-tape TMs. A
computation is called sequential interactive computation because it continuously
interacts with its environment by alternately accepting an input string on the
input-tape and computing on the work-tape a corresponding output string to
be delivered on the output-tape. The computation is persistent, meaning that
the content of the work-tape persists from one computation step to the next by
ensuring a memory function.
The definition of PTM was based on Peter Wegner’s interaction theory developed
to embody distributed network programming.

Interaction is more powerful than rule-based algorithms for computer problem

solving, overturning the prevailing view that all computing is expressible as

algorithms [4,5].

3 The work was developed in connection of the celebration of Paris Kanellakis for his
50th birthday. They were his first and last Ph.D student.
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2 E. Merelli, A. Wasilewska

Since in this framework interactions are more powerful than rules-based algo-
rithms they are not expressible by an initial state described in a finite terms.
Therefore, one of the four Robin Gandy’s principles (or constraints) for com-
putability is violated, as stated in [6]. The need to relax such constraints allows
one to think that interactive systems might have a richer behavior than algo-
rithms, or that algorithms should be seen from a di↵erent perspective. Although
PTM makes the first e↵ort to build a TM that accepts infinite input, we strongly
support the idea that the interaction model should also include the formal char-
acterization of the notion of environment.

In this paper, we focus on Smolka et al. original point of view on persis-
tent and interactive computation. We revisit and formalize a concept of com-
putational environment for PTM following Avi Wigderson’s machine learning
paradigm in [7].

Many new algorithms simply 0create themselves0 with relatively little
intervention from humans, mainly through interaction with massive data4.

We use the notion of computational environment to define class of abstract
computable functions as sets of relations between inputs and outputs of PTM.
The computational environment depends on time and space. It can evolve and
so the e↵ectiveness of these functions depends on a given moment and a given
context.

Computational environment is defined in terms of ambient space. The am-
bient space is a generalization of a notion of ambient manifold introduced [8] to
describe the topological quantum computation model.

We do it in such a way that the infinite computation can be reduced to
a set of relations, constrained within its ambient space by loops of non-linear
interactions. The ambient space is not necessarily a vector space, hence there
is a problem of linearity and non-linearity of computation. The non-linearity
originated from the shape that can be associated to the ambient space, which
can be obtained by the topological analysis of the set of data provided by the real
environment. Figure 1 shows the synthesis of this concept. The ambient space
and PTM can be thought as mathematical representation of complex systems,
merely defined as systems composed of many non-identical elements, constituent
agents living in an environment and entangled in loops of non-linear interactions.

We built a topological PTM to model both the behavior of an interactive ma-
chine and its computational environment. The main idea of the generalization is
that output-tape is forced to be connected to the input-tape through a feedback
loop. The latter can be modeled in a way that the input string can be a↵ected by
the last output strings, and by the current state of the computational environ-
ment. A state of a topological PTM becomes a set of input and output relations
constrained to an environment whose geometric representation formally defines
the context of the computation. If many topological PTMs share the same com-
putational environment, the computation becomes a stream of interactions of
concurrent processes, which at higher dimension can be seen as a collection of

4 https://www.ias.edu/ideas/mathematics-and-computation
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bient space is a generalization of a notion of ambient manifold introduced [8] to
describe the topological quantum computation model.

We do it in such a way that the infinite computation can be reduced to
a set of relations, constrained within its ambient space by loops of non-linear
interactions. The ambient space is not necessarily a vector space, hence there
is a problem of linearity and non-linearity of computation. The non-linearity
originated from the shape that can be associated to the ambient space, which
can be obtained by the topological analysis of the set of data provided by the real
environment. Figure 1 shows the synthesis of this concept. The ambient space
and PTM can be thought as mathematical representation of complex systems,
merely defined as systems composed of many non-identical elements, constituent
agents living in an environment and entangled in loops of non-linear interactions.

We built a topological PTM to model both the behavior of an interactive ma-
chine and its computational environment. The main idea of the generalization is
that output-tape is forced to be connected to the input-tape through a feedback
loop. The latter can be modeled in a way that the input string can be a↵ected by
the last output strings, and by the current state of the computational environ-
ment. A state of a topological PTM becomes a set of input and output relations
constrained to an environment whose geometric representation formally defines
the context of the computation. If many topological PTMs share the same com-
putational environment, the computation becomes a stream of interactions of
concurrent processes, which at higher dimension can be seen as a collection of

4 https://www.ias.edu/ideas/mathematics-and-computation

Topological Interpretation of Interactive Computation 9

Unfortunately, the sake of space economy forced to omit most of the results;
we only recall Theorem 24, Theorem 32 and Thesis 50 (in the sequel renumbered
Theorem 1, Theorem 2 and Thesis 1, respectively) and address the reader eager
for more information to the original article [1].

Theorem 1 The structures hM,=msi and hT,=isoi are isomorphic.

Theorem 1 states that there exists a one-to-one correspondence between the class
of PTMs, denoted by M up to macrostep equivalence, denoted by =ms, and the
class of ITSs, denoted by T up to isomorphism, denoted by =iso.

Theorem 2 If a PTM M has unbounded nondeterminism, then M diverges.

Theorem 2 states that a PTM M diverges if there exists some w 2 reach(M),
wi 2 ⌃⇤ such that there is an infinite number of wo 2 ⌃⇤

[{µ}, w0
2 ⌃⇤

[{sdiv},

such that w
wi/wo
����! w0.

Thesis 1 Any sequential interactive computation can be performed by a PTM.

Like the Church-Turing Thesis, Thesis 1 cannot be proved. Informally,
each step of a sequential interactive computation, corresponding to a single
input/output-pair transition, is algorithmic. Therefore, by the Church-Turing
Thesis, each step is computable by a TM. A sequential interactive computation
may be history-dependent, so state information must be maintained between
steps. A PTM is just a TM that maintains state information on its work-tape
between two steps. Thus, any sequential interaction machine can be simulated
by a PTM with possibly infinite input.

The PTM environment. In her earlier work [2], D. Goldin proposed a notion
of environment to highlight that the class of behaviors captured by the TM, the
class of algorithmic behaviors, is di↵erent from that represented by the PTM
model, the sequential interactive behaviors. The conceptualization of the envi-
ronment provides the observational characterization of PTM behaviors given by
the input-output streams. In fact, given two di↵erent environments O1 and O2

and a PTM machine M, the behavior of M observed by interacting with an
environment O1 can be di↵erent if observed by interacting with O2. Also, given
two machines M1 and M2 and one environment O, if the behaviors of the two
machines are equal (one can be reduced to the other), they must be equivalent
in O. This claim gives the go-ahead to Theorem 3. Any environment O induces
a partitioning of M into equivalence classes whose members appear behaviorally
equivalent in O; the set of equivalence classes is denoted by �o. Indeed, the
equivalences of the behaviors of two PTMs can be expressed by the language
represented in the set of all interaction streams.

Let B(M) denote the operator that extracts the behavior of a given machine
M, and O(M) a mapping that associates any machine M to the class of the be-
haviors feasible for the environment O. Therefore, each machine can be classified
by analyzing its interaction streams with the two operators, B and O.

Smolka
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We are living in a not flat world

Flammarion 1888

that for some 
aspects it is 

unknown 
… 

and perhaps 
some of its 
symmetries 
have been 
missed in 

some theory 
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Topological Turing machine (TTM) extends the PTM with the 

notion of  topological environment a global space 
constructed over a set of possible TM’s configurations. 

Is TTM a potential universal model for interactive 
computation and possibly a new model for concurrent 
computation? 

Topological Persistent Turing Machine
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Topology is the geometry of a shape, it deals with with 
qualitative geometric information of a space, such as 
connectivity, classification of loops and higher 
dimensional manifolds, invariants. 

Algebraic topology is a branch of mathematics that uses 
algebraic tools to study topological spaces, a set of 
points and for each point a set neighbourhoods, both 
satisfying a set of axioms.  
Its goals is to find algebraic invariants that classify 
topological spaces up to some homeomorphism or 
homotopy equivalences. 

In a discrete setting a full information about topological 
spaces is inherent in their simplicial representation, a 
piece-wise linear, combinatorially complete, discrete 
realization of functoriality. 

Example:	What	is	the	shape	of	the	data?

Problem:	Discrete	points	have	trivial	topology.

Background
A	simplicial complex is	built	from	points,	edges,	
triangular	faces,	etc.

Homology counts	components,	holds,	voids,	etc.

0-simplex 1-simplex 2-simplex 3-simplex
(solid)

example	of	a	
simplicial complex

hole void
(contains	faces	but	
empty	interior)

Homology	of	a	simplicial
complex	is	computable	

via	linear	algebra.

!

Idea:	Connect	nearby	points,	build	a	simplicial	
complex.

1.	Choose	
a	distance	

!.

Problem:	How	do	we	choose	distance	!?

2.	Connect	
pairs	of	points	
that	are	no	
further	apart	

than	!.

3.	Fill	in	
complete	
simplices.

4.	Homology	detects	the	hole.

Topology and Persistent Homology 
Persistent homology is an 

algebraic method for discerning 
 topological features of space of data

!!!

movie by Matthew L. Wright

e.g. components, 
graph structure 

holes

set of discreet points

simplicial complex
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The TOPDRIM objective
The study of new maths for understanding  

the dynamics of complex systems 

Complex Networks

Persistent homology

Probabilistic Methods

Geometric Entropy Persistent Entropy

Topology and Phase Transitions in Statistical Mechanics: a new perspective 
A method for identifying phase transition

Formal Methods

Persistent Entropy Automaton

S[B] Paradigm and Adaptive Systems: One Possible Instance Adaptability Properties Conclusions and Future Directions

System Adapted, in a New Steady State

Paoletti, Merelli, Tesei. Adaptability Checking in Complex Systems 21/37
Figure 2: Graphical representation of our methodology. All the details are explained in the text.

calculated during the iterations. The computational agents identified at each iteration
step, formally represented by interaction matrices, are the sequence of B levels associated
to the observed evolution of S[B].

To validate our methodology we consider, as case study, the Idiotypic Network (IN)
model [20] of the mammal immune system. The latter has been largely studied as a
complex adaptive system [15] and several other models are available. Concerning the IN
model, we consider the simplified description given by Parisi [28] and we use the agent-
based simulator C-ImmSim [4] for generating the data to validate our approach. In this
work, we analyzed simulated data instead of real data in order to validate the correctness
of the methodology in a more controlled way.

The paper is organized as follows. Section 2 introduces the case study of the IN.
Section 3 describes our methodology step by step in order to extract from data a two-
level model according to the S[B] paradigm. In Section 4 the methodology is applied to
the case study of IN and finally Section 5 provides concluding remarks.

3

Topological language for RNA Shapes

Bioinspired Methods

Bio-inspired methods

Data Point Cloud

Innovative methodology  
for data mining 

Topological Algorithmic Field Theory of Data 
• Topological data analysis (TDA) 
• Topological fields theory 
• Formal languages

Applications 
• neuroscience 
• epidemiology 
• life science 
• financial 
• robotics

Results

Dataset

What kind of data are we deal with?

Time series are collections of values in time 
Time series
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1. to go beyond Complex Networks and 
graph theory, beyond structural and 
functional connectivity of networks 

2. to exploit the potential of Simplicial 
Complexes and topology theory 
(Persistent Homology) for studying n-
dimensional objects (n >= 2) and many-
body interactions that characterize the 
emerging behaviour of complex systems 

3. to find correlation patterns hidden in a 
data space whose dimension justifies the 
use of Topological Data Analysis 

Topology and complex systems
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Complex systems are composed of many non-identical elements, 
entangled in loops of nonlinear interactions, and characterized 
by the typical 'emergent' behaviour, a non-trivial superstructure 
that cannot be reconstructed by a reductionist approach.

COMPLEX SYSTEMS

data space

SM

BA

<

direct transformation

GMC

Gp
Gp

topological data field
relation patterns

fiber bundle + field action

simplicial complex
base space

M. Rasetti, E. Merelli Topological field theory of data: mining data beyond complex networks, Cambridge University Press, 2016
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Topological algorithmic Field Theory of Data

The TFTD consists of four main steps: 

1. embedding data space into a combinatorial 
topological object, a simplicial complex;  

2. considering the complex as base space of a (block) 
fiber bundle; 

3.  assuming a field action, which has a free part, the 
combinatorial Laplacian over the simplicial complex, and 
an interaction part depending on the process algebra; 

4. constructing the gauge group as semi-direct product 
of the group generated by the algebra of processes (the 
fibers) and the group of (simplecio-morphisms modulo 
isotopy) of the data space.  

Emergent features of data-represented complex systems 
were shown to be expressed by the correlation functions 
of the field theory.

M. Rasetti and E. Merelli. Topological field theory of data: mining data beyond complex networks, Cambridge University Press, 2016
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Topological algorithmic field theory of data at work
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Topological algorithmic field theory of data: 
an interdisciplinary research program

automaton

big data collections
behavioural semantics

contextual semantics

? 

The Topological Field Theory of Data: a program

towards a novel strategy for data mining through

data language

M Rasetti 1 and E Merelli 2

1ISI Foundation, Via Alassio 11-C, 10126 Torino (Italy)
2 School of Science and Technology, University of Camerino,
Via del Bastione 1, 62032 Camerino (Italy)

E-mail: rasetti@isi.it ; emanuela.merelli@unicam.it

Abstract. This paper aims to challenge the current thinking in IT for the 0Big Data 0 question,
proposing – almost verbatim, with no formulas – a program aiming to construct an innovative
methodology to perform data analytics in a way that returns an automaton as a recognizer of
the data language: a Field Theory of Data. We suggest to build, directly out of probing data
space, a theoretical framework enabling us to extract the manifold hidden relations (patterns)
that exist among data, as correlations depending on the semantics generated by the mining
context. The program, that is grounded in the recent innovative ways of integrating data into a
topological setting, proposes the realization of a Topological Field Theory of Data, transferring
and generalizing to the space of data notions inspired by physical (topological) field theories
and harnesses the theory of formal languages to define the potential semantics necessary to
understand the emerging patterns.

1. The landscape
Complex Systems are ubiquitous; complex, multi-level, multi-scale systems are everywhere: in
Nature, but also in the Internet, the brain, the climate, the spread of pandemics, in economy
and finance; in other words in Society. A deep, intriguing question that has been raised about
complex systems is: can we envisage the construction of a bona fide Complexity Science Theory?
In other words, does it make sense to think of a conceptual construct playing for complex systems
the same role that Statistical Mechanics played for Thermodynamics?

The challenge is indeed enormous. In statistical mechanics a number of basic restrictive
assumptions play a crucial role: ergodicity ensures that all accessible states of a system are
reached with equal probability; the thermodynamic limit, N ! 1, induces the number of
particles into play, measured in terms of the Avogadro’s number, to be essentially infinite;
particles are identical and indistinguishable, constraint that is not even mentioned when studying
the features of collections of particles, but it is there – particles of the same species are identical
and interact with each other pairwise all in the same way, that is, with the same interaction
law – in the quantum case they are indistinguishable; analytical structure can be defined for the
underlying dynamics, that is, regular equations of motion exist at the micro-scale – analyticity
breaking and singularities only appear as signal of the macro-phenomenon of phase transitions;
0experiment-based 0 phenomenology is repeatable, as in reductionist science, under the same
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Non locality, topology, formal languages:
new global tools to handle large data sets

Emanuela Merellia,⇤, Mario Rasettib

a
School of Science and Technology, University of Camerino, Via del Bastione,1, Camerino 62032, italy

b
ISI Foundation, Via Alassio 11-C, Torino 10126, Italy

Abstract
The basic idea that stems out of this work is that large sets of data can be handled through an organized set of mathematical and
computational tools rooted in a global geometric vision of data space allowing to explore the structure and hidden information
patterns thereof. Based on this perspective, the objective is naturally that of discovering and letting emerge, directly from probing
the data space, the manifold hidden relations (patterns), e.g. correlations among facts, interactions among entities, relations among
concepts and formally describing, in a semantic mining context, the discovered information. In this note, we propose an approach
that exploits topological methods for classifying global information into equivalence classes and regular languages for describing
by the corresponding automata the hidden features of complex systems.

Keywords: Topology of data; Mapping Class Group; Formal Language; Complex systems.

1. Introduction

Probably the most important fact in modern science is the dramatic change in paradigms that has
seen reductionism challenged by holism. If complex systems are defined as systems composed
of many non-identical elements, entangled in loops of non-linear interactions, the challenge is to
control the collective emergent properties of these systems, from knowledge of components to
global behavior. A typical feature of complex systems is in fact emergence of non-trivial super-
structures that cannot be reconstructed by applying a reductionist approach. Not only do higher
emergent features of complex systems arise out of the lower level interactions, but the patterns
that they create react back on those lower levels. We can consider a complex system made by
two levels of information, the local information - i.e. the network of interactive elements - and
the global information - the emergence of global properties, possibly unknown, from the observed

⇤Corresponding author: tel. +39-338-399-0412 ; fax. +39-0737-40-2561; email: emanuela.merelli@unicam.it
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Abstract In order to define a new method for analyzing
the immune system within the realm of Big Data, we bear

on the metaphor provided by an extension of Parisi’s

model, based on a mean field approach. The novelty is the
multilinearity of the couplings in the configurational vari-

ables. This peculiarity allows us to compare the partition

function Z with a particular functor of topological field
theory—the generating function of the Betti numbers of the

state manifold of the system—which contains the same

global information of the system configurations and of the
data set representing them. The comparison between the

Betti numbers of the model and the real Betti numbers

obtained from the topological analysis of phenomenologi-
cal data, is expected to discover hidden n-ary relations

among idiotypes and anti-idiotypes. The data topological

analysis will select global features, reducible neither to a
mere subgraph nor to a metric or vector space. How the

immune system reacts, how it evolves, how it responds to

stimuli is the result of an interaction that took place among
many entities constrained in specific configurations which

are relational. Within this metaphor, the proposed method
turns out to be a global topological application of the

S[B] paradigm for modeling complex systems.

Keywords Immune system ! Multilinear mean field !
Pattern discovery ! Complex systems ! Adaptive models !
S[B] paradigm ! Topology of data ! Betti numbers ! Big
Data

1 Introduction

The objective pursued in this note is to frame the research

on the immune system as part of data science. Such
research is naturally complex and articulated and our

contribution intends to be here along the lines of seeing it

as a viable candidate for topological data analytics and an
example of the S[B] paradigm for modeling complex sys-

tems. We recall that data science is the practice to deriving

valuable insights from data by challenging all the issues
related to the processing of very large data sets, while Big

Data is jargon to indicate such a large collection of data

(for example, exabytes) characterized by high-dimension-
ality, redundancy, and noise. The analysis of Big Data

requires handling high-dimensional vectors capable of
weaning out the unimportant, redundant coordinates. The

notion of data space, its geometry and topology are the

most natural tools to handle the unprecedentedly large,
high-dimensional, complex sets of data (Carlsson 2009;

Edelsbrunner and Harer 2010); basic ingredient of the new

data-driven complexity science (TOPDRIM 2012; Merelli
and Rasetti 2013).

Topology, the branch of mathematics dealing with

qualitative geometric information such as connectivity,
classification of loops and higher dimensional manifolds,

studies properties of geometric objects (shapes) in a way

which is less sensitive to metrics than geometric methods:
it ignores the value of distance function and replaces it with

the notion of connective nearness: proximity. All these

E. Merelli (&)
School of Science and Technology, University of Camerino,
Camerino, Italy
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M. Pettini
Centre de Physique Théorique, UMR7332, Luminy,
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The learning process is articulated in three pillars:  

i)  persistent homology methods, to extract, from a 
simplicial complex representation of the manifolds 
embedded in data-space, those correlation patterns 
that encode deep level information;  

ii)  topological field theory of data, able to extract all 
characteristic information about such patterns, non-
linearly tangled in the data set, in a way that – just in 
view of nonlinearity – is expected also to feedback the 
re-organization of the data set itself (the gauge group);  

iii)  theory of formal languages, enabling us to express 
the semantics of the transformations implied by the 
field dynamics into automata-based learning 
processes. 

TFTD for Automata-based Learning

SM

B
A

<

direct transformation

GMC

Gp
Gp

The learning framework
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• process is the behavior of system 

• a process domain is the context to interpret a process 

• a behaviour can be described as action relations 

• a process performs actions and interacts with other 
processes through its environment

Classical Notion of Process



E. Merelli, University of Camerino

A topological Turing machine (TTM) is a model 
of computation able to describe both the 
behaviour of interactive machines, its processes, 
and the computational environment, the context 
to interpret a process, its process domain.

Topological Persistent Turing Machine: 

the algorithmic aspect of TFTD 

the algorithm as a process
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Topological Turing machine (TTM) extends 

the PTM with the notion of  topological 
environment, a global space to interpret its 

processes.

Topological Persistent Turing Machine
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G: total space

Fiber bundle  =  < G, B, H,     >π
Topological PTM
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The ambient space and PTM can be thought as mathematical representation of 
complex systems, merely defined as systems composed of many non-identical 
elements, constituent agents living in an environment and entangled in loops of 
non-linear interactions. 

The topological PTM models both the behaviour of 
an interactive machine and its computational 

environment. 

The main idea of the generalization is that output-
tape is forced to be connected to the input-tape 

through a feedback loop

The feedback loop is modelled in a way that the 
input string can be affected by the last output 

strings, and by the current state of the 
computational environment.

The computational environment 
depends on time and space. 

The time is represented by 
collection of steps.

Given a PTM, let X be a set of its input 
and output strings. For each step i in 

time, we define an equivalence relation ~i 
on X such that inputi in X there exists an 

operator fi such that fi(inputi) = outputi
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G: total space
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In classical Turing machine the set of operators fi 
is called rules or transformations. Our goal is to 

build an environment where this set of functions 
fi  can be discovered.

Each element of X represents a transition 
from one state of the machine to a next 
guided by the operator fi (unknown for 

the model) constrained over the 
computational environment. 

These operators allow us to represent X as a union 
of quotient spaces of the set of equivalence 

classes X/ ∼i of all the feasible relations hidden in 
X.  

The resulting functional matrix of fi, also called 
interaction matrix, represents the computational 
model or what we called the learnt algorithm in 

�
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2 E. Merelli, A. Wasilewska

Since in this framework interactions are more powerful than rules-based algo-
rithms they are not expressible by an initial state described in a finite terms.
Therefore, one of the four Robin Gandy’s principles (or constraints) for com-
putability is violated, as stated in [6]. The need to relax such constraints allows
one to think that interactive systems might have a richer behavior than algo-
rithms, or that algorithms should be seen from a di↵erent perspective. Although
PTM makes the first e↵ort to build a TM that accepts infinite input, we strongly
support the idea that the interaction model should also include the formal char-
acterization of the notion of environment.

In this paper, we focus on Smolka et al. original point of view on persis-
tent and interactive computation. We revisit and formalize a concept of com-
putational environment for PTM following Avi Wigderson’s machine learning
paradigm in [7].

Many new algorithms simply 0create themselves0 with relatively little
intervention from humans, mainly through interaction with massive data4.

We use the notion of computational environment to define class of abstract
computable functions as sets of relations between inputs and outputs of PTM.
The computational environment depends on time and space. It can evolve and
so the e↵ectiveness of these functions depends on a given moment and a given
context.

Computational environment is defined in terms of ambient space. The am-
bient space is a generalization of a notion of ambient manifold introduced [8] to
describe the topological quantum computation model.

We do it in such a way that the infinite computation can be reduced to
a set of relations, constrained within its ambient space by loops of non-linear
interactions. The ambient space is not necessarily a vector space, hence there
is a problem of linearity and non-linearity of computation. The non-linearity
originated from the shape that can be associated to the ambient space, which
can be obtained by the topological analysis of the set of data provided by the real
environment. Figure 1 shows the synthesis of this concept. The ambient space
and PTM can be thought as mathematical representation of complex systems,
merely defined as systems composed of many non-identical elements, constituent
agents living in an environment and entangled in loops of non-linear interactions.

We built a topological PTM to model both the behavior of an interactive ma-
chine and its computational environment. The main idea of the generalization is
that output-tape is forced to be connected to the input-tape through a feedback
loop. The latter can be modeled in a way that the input string can be a↵ected by
the last output strings, and by the current state of the computational environ-
ment. A state of a topological PTM becomes a set of input and output relations
constrained to an environment whose geometric representation formally defines
the context of the computation. If many topological PTMs share the same com-
putational environment, the computation becomes a stream of interactions of
concurrent processes, which at higher dimension can be seen as a collection of

4 https://www.ias.edu/ideas/mathematics-and-computation
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representation as simplicial complex, has a non trivial topology. As an example,
in Figure 1, the base space B is two-dimensional handlebody of genus 3. The
formal description of the proposed approach rests on three pillars: i) algebraic
and computational topology for modeling the environment as a simplicial space
B; ii) field theory to represent the total space G of the machine as a system of
global coordinates that changes according to the position PB of the observer re-
spect to the reference space H, and iii) formal languages to enforce the semantic
interpretation of the system behaviour into a logical space of geometric forms,
in terms of operators fi that here we call correlation functions in the space of
the fiber H.
Consequently, an e↵ective PTM is nothing but a change of coordinates, consis-
tently performed at each location according to the 0field action0 representing the
language recognized by the machine.
While the algorithmic aspect of a computation expresses the e↵ectiveness of the
computation, the topological field theory constraints the e↵ectiveness of a com-
putation to a specific environment where the computation might take place at
a certain time in space.

It is right here to recall Landin’s metaphor of the ball and the plane, in-
troduced to describe the existence of a double link between a program and
machine [13]:

One can think of the ball as a program and the plane as the machine on which it

runs. ... the situation is really quite symmetric; each constrains the other [14].

Alan Turing himself, in his address to the London Mathematical Society in
1947, said

. . . if a machine is expected to be infallible, it cannot also be intelligent [15].

It is becoming general thinking that intelligence benefits from interaction and
evolves with something similar to adaptability checking [9]. Accordingly, the
PTM, and its topological interpretation seem to be a good starting point for
modeling concurrent processes as interactive TMs [19]. Also considering that
the set of PTMs reveals to be isomorphic to a general class of e↵ective tran-
sition systems as proved in Smolka et al. in [1]. This result allows to make the
hypothesis that the PTM captures the intuitive notion of sequential interactive
computation [2], in analogy to the Church-Turing hypothesis that relates Turing
machines to algorithmic computation.

What is computation? Turing, Church, and Kleene independently formalized
the notion of computability with the notion of Turing machine, �-calculus, partial
recursive functions. Turing machine manipulates strings over a finite alphabet,
�-calculus manipulate �-terms, and µ-recursive functions manipulate natural
numbers. The Church-Turing thesis states that

every e↵ective computation can be carried out by a Turing machine or
equivalently a certain informal concept (algorithm) corresponds to a certain

mathematical object (Turing machine) [16].
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Fig. 6. The pictures (A–D) summarize the main steps to transform a space S of PTM
into a topological space SP . The construction is obtained by gluing together – put
in relation – the two boundaries of the space S, a and b respectively, which become
the generators a and b of the new space SP . The topological space SP , finite but not
limited, naturally supports the notion of the environment of PTM.

tions imposed by topology. Incidentally, it is this set of constraints together with
the semidirect product structure that implies the non-linearity of the process.

Definition 7 (Topological Turing machine) A Topological Turing machine
(TTM) is a group G consisting of all interaction streams generated by the group
of PTMs entangled with the group of all transformations of the topological space
SP preserving the topology. Formally G = GAP ^ GMC , where GAP is the group
of PTMs and GMC the simplicial analog of the mapping class group.

Proposition 1 If G is automatic, the associated language L is regular. Since the
representations of G can then be constructed in terms of quivers Q with relations
induced by the corresponding path algebra induced by PTMs, the syntax of L is
fully contained in T and its semantics in M.

Definition 8 (Constrained interactive computation) An interactive com-
putation is constrained if it is defined over a topological space SP and it is an
element of the language of paths of SP .

Theorem 4 Any constrained interactive computation is an e↵ective computa-
tion for a TTM.

Thesis 2 Any concurrent computation can be performed by a TTM.

4 Final remarks

In 2013, Terry Tao in his blog [20] posted this question: if there is any computable
group G which is 00Turing complete00 in the sense that the halting problem for

Topological Interpretation of Interactive Computation 11

In our model, the infinite input of the PTM should be seen as a feedback
loop of a dynamic system. Its functional behavior is represented by a class T
of ITS constrained by the information contained in the self-organizing memory
associated with the notion of topological environment. The data structure used
to store information is the simplicial complex SP , that is a topological space S

constructed over the set of PTM configuration P. The SP is equipped with a
finite presentation in terms of homology groups whose relations are fully repre-
sentable. In this view the PTM functional behavior can be determined by SP

modulo ITS isomorphism. We operate in a discrete setting where full information
about topological space is inherent in their simplicial representation. Appendix 1
provides some useful definitions for algebraic and computational topology.

Definition 6 (Topological environment) Given the set of PTM configura-
tions Pi available at a given time i, the topological environment is the simplicial
complex SPi constructed over Pi.

The topological environment SP , as any topological space is equipped with
a set of invariants that are important to understand the characteristics of the
space. For the sake of simplicity we will refer to topological space as a contin-
uous space. The n-dimensional holes, the language of paths, the homology and
the genus are topological invariants. The n-dimensional holes are determined
during the process of filtration, called persistent homology, that is used to con-
struct a topological space starting from a set of points. The numbers of holes
and their associated dimensions are determined by the homology structure fully
represented by the homology groups associated with a topological space. Also
the homology is a topological invariant of the space, it is always preserved by
homeomorphisms of the space.

A path in a topological space S is a continuous function f : [0, 1] ! S from
the unit interval to S. Paths are oriented, thus f(0) is the starting point and f(1)
is the end-point, if we label the starting point v and the end-point v0, we call f
a path from v to v0 as shown in Figure 2-(a). Two paths a and b, that is two
continuous functions, from a topological space S to a topological space S

0 are
homotopic if one can be continuously deformed into the other. Being homotopic
is an equivalence relation on the set of all continuous functions from S to S

0.
The homotopy relation is compatible with function composition.

Therefore, it is interesting to study the e↵ect of the existence of holes (at
any dimension) in a topological space S (for simplicity the discussion is made
thinking of S as a 2D surface) built from the space of configurations P where
a sequential interactive computation takes place as a sequential composition of
paths. Figures 2-(b) and -(c) show the composition of two paths a and b, and the
proof that they are not homotopic, respectively. Given two-cycle paths, a and
b, with a point in common in x, if the composition of the two paths ab or ba is
not commutative, the two composed paths are not equivalent. In this case, the
two cycle paths, a and b can be considered the generators of a topological space
with one 2-dimensional hole, as shown in Figure 3. Each generator represents a
distinct class of paths, [a] those going around the neck, and [b] those around the
belt of the torus, respectively.
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Fig. 7. A class of behaviors over a torus ↵ close paths, � path around the neck, µ
path around the belt, � complex path

any Turing machine can be converted into a question of the above form. In other
words, there would be an algorithm which, when given a Turing machine T ,
would return (in a finite time) a pair xT , yT of elements of G with the property
that xT , yT generate a free group in G if and only if T does not halt in finite
time. Or more informally: can a 0group0 be a universal Turing machine?
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