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The ubiquitous complex systems

Complex, multi-level, multi-scale systems are
everywhere:

in NATURE ,
but also the Internet, the brain, the climate, the spread
of pandemics, economy and finance:
in SOCIETY

The question was asked
can we envisage the construction of  a

Complexity Science Theory ? 

Does it have sense thinking of a conceptual construct
for complex systems playing the same role that
statistical mechanics played for thermodynamics ?





Bevys of  Starlings

Multi-agent – Multi-scale – Emergent effects
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The challenge is enormous:

In Statistical Mechanics we assume

Ø Ergodicity (a property shared with number
theory: reals vs. integers or rationals !)

Ø Thermodynamic limit ( N à∞ )
Ø Identical / indistinguishable particles
Ø Repeatable phenomenology;

“experiment – based” 

Ø Analytical structure of underlying dynamics
(only phase transitions = singularities)

Only in this way stat-mech is able to provide a reliable
representation of several facts of thermodynamics



On the contrary typically complex systems are:

Ø NOT Ergodic

Ø Their number of  agents N = FINITE (even though it
can be quite large)

Ø Agents are NOT identical (they are distinguishable
complex systems themselves, with their strategies) 

Ø They are NEVER representable by analytic (perhaps
not even recursive) functions

and, above all,  

Ø They are DATA-based; typically NO repeatable
experiment is possible, in reductionist sense



We concentrate on the latter feature

Big Data = Big Challenge
of dealing with the huge amount of information flowing
in and around complex systems, endowing ICT with
new, more efficient tools to play a role in turning

data into information, 

information into knowledge, 

and eventually 

knowledge into wisdom. 

The ever-more blurred boundaries between digital and
physical worlds will thus progressively fade away, as
ICT becomes an integral part of the fabric of nature
and society.



Our aim is to explore whether we can tame Big
Data with Topology (the geometry of ‘shapes’)

Fundamental notion, from computer science when
dealing with data, is the concept of

‘ ’ :
Ø the structure in which information is encoded;

Ø the frame for algorithmic (digital) thinking; 

Ø the lode where to perform Data Mining, i.e., to
extract patterns of information



This is the task : find new ways of mining data
spaces for information resorting to geometrical
(indeed topological, combinatorial) methods.

We claim that topology is the natural tool to handle
large, high-dimensional, complex spaces of data

Why? Because : 

Qualitative information is relevant : data users aim
to obtain knowledge: understand how data is
organized on large scale. Global, even though
partly qualitative, information is what is needed.



Metrics are not theoretically justified : physical
phenomena support theories that tell us exactly what
metric to use; in the life science or social sciences
this is fully uncertain.

Coordinates are not natural : data is typically
transmitted in the form of ‘vectors’ (strings of
symbols, typically numbers in some field çè Gödel
numbers), but the ‘components’ or linear
combinations of these vectors are not natural in any
sense: the space of data is not a vector space



Summaries are most valuable : the conventional
method of handling data is building a graph
(network) whose vertex set are data and two points
are connected by an edge if their ‘proximity measure’
(in the sense of Grothendieck topology) is, say, ≤ η,
and then try and determine the optimal choice of η.
It is however much more informative to consider the
entire dendrogram, getting at once a summary of its
relevant features under all possible values of η and
try and find a way to know how the global features of
data space vary changing η.



Data & Topology
If Topology is the natural tool to handle large, high-
dimensional, sets of data, how do we deal with it ?

The pillar of computation logic is the Church-Turing
Thesis :

< Any well-defined procedure that can be grasped and
performed by the human mind and ‘pencil/paper’, can
be performed on a conventional digital computer with no
bound on memory. >

This is NOT a theorem; it is a statement of belief
concerning the universe we live in.
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There are several intuition-based approaches to
Church Turing thesis :

Empirical Intuition

No one has ever given a concrete example of process
that humans can compute in a consistent and well
defined way, yet cannot be programmed on a
computer.
The thesis is true.

Mechanical Intuition

The brain is a machine whose components obey
physical laws. As such, in principle, a brain can be
simulated on a digital computer, and its functions can
be computed by a simulating computer.
The thesis is true.
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Quantum Intuition

The brain is a machine, but not a classical one. It has
quantum mechanical features, hence there are inherent
barriers to its being simulated on a digital computer.
The thesis is false. However, it remains true if we allow
for quantum computers.

‘Beyond Turing’ Intuition

The brain is inherently a quantum computing machine
but able to compute ‘uncomputable’ functions.
The thesis is false. A new tool is needed: the (quantum)
Gandy machine. A Gandy machine is equivalent to a set
(finite? countably infinite? uncountable?) of interacting
Turing machines: (Topological � non-linear) Quantum
Field Theory is necessary.



For all these reasons the methods to adopt should be
inspired by topology, because :

Topology is the branch of mathematics that deals
with qualitative geometric information about a space
(connectivity, classification of loops and higher
dimensional manifolds, invariants).

Topology � contrary to geometry � studies geometric
properties in a way insensitive to metrics : it ignores
distance function and replaces it with some
measurable notion of ‘connective nearness’, i.e.,
proximity (η ; think of ‘hand-shake’ )



Topology deals with those properties of geometric
objects that do not depend on coordinates but only
on intrinsic geometric features. It is coordinate-free.

In Topology relationships involve maps between
objects: they are a manifestation of functoriality.
Moreover, invariants are related not just to objects
but to the maps between them. Functoriality reveals
a categorical structure enabling the computation of
global invariants from local information.

Full information about topological spaces is
inherent in their simplicial representation, a piece-
wise linear, combinatorially complete, discrete
realization of functoriality.



The conventional way to convert the collection of
points of data space into a structured object is to use
the point cloud X as vertex set of a graph Θ (a
NETWORK), whose edges are determined by proximity.

Θ captures well data connectivity (local), but ignores a
wealth of higher order (global) features, well discerned
instead considering its completion to a higher-
dimensional object, of which Θ is the 1-skeleton: the
simplicial complex S≈X, PL space built of simple pieces
(simplices) identified combinatorially along their faces.

Natural complexes are: i) the Čech complex (k-simplices are
(k+1)-tuples of points whose η/2-ball neighborhoods
intersect ); ii) the Rips-Vietoris complex, whose k-simplices
are (k+1)-tuples of points pairwise within distance η.



The metaphor:
Internet



Rips-Vietoris complex

Čech complex



The necessary tools are :

Ø Persistent homology : to disentangle the global
complexity of data sets; (signal vs. noise)

Ø Measure theory / filtration : to perform the process

graphs (networks) à simplicial complexes
and statistically weight the emerging structure.

Ø Formal methods : languages – groups – automata;
to disentangle the hierarchical structural
architecture and lead to the separation of the
behavioral level from the structural level (the S[B]
system)



Data as a point cloud

Consider this object:
It appears to be a 
triple torus.

But what when we zoom in? (Pictures: Peter Saveliev)
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Filtration of  a simplicial complex



Our goal is the construction of a Topological Data
Field Theory (TDFT), giving us a new ‘camera’ for
reading complex systems (in nature and society) :

• a camera whose ‘photographs’ do not consign reality
to the past the moment they are shot, but enables us
to predict a piece of the future;

• a TDFT whose gauge
group looks into the
transformation properties
of the space of data
revealing hidden complex
patterns, somewhat like
the vortices in turbulent
water that only Leonardo’s
eye was ever able to catch.



The three pillars the scheme rests on are:

1) Topological Data Analysis (persistent homology
driven), based on the global topological (both
algebraic and combinatorial) structural features of
data space;

1) Statistical/Topological Field Theory of Data Space,
as generated by the simplicial structure underlying
data space and its self-transformation properties;

1) Semantics, emerging (naturally and autonomously)
from the structure of the Formal Language
generated by the transformations of data space.



Key ingredients of this construction are the homology
groups, Hi (X ), i = 0, 1,… , of data space X and the
associated Betti numbers, bi = bi(X), bi being the rank
(dimension) of Hi(X); basic set of topological invariants of
X (when there is no torsion, the bi’s are sufficient).

Enrico Betti

generators of  the 
homology groups

Intuitively, Hi’s are functional
algebraic tools to pick up the
qualitative features of
topological space S ≈ X (S =
the simplicial complex)
connected with the existence
in X of holes in various
dimensions.
Holes means cycles which
don’t arise as boundaries of
higher-dimensional objects.



Known, efficient algorithms allow us to compute
homology groups.

Most invariants in algebraic topology are difficult to
compute efficiently; homology is not, because its
invariants arise from quotients of finite-dimensional
spaces and some derive from ‘physical’ models.

Traditional topology invariants were constructed out
of manifest geometric global properties to distinguish
homeomorphically different objects; recently others
were discovered based on topological quantum field
theory technology. These provide information about
topological features one cannot detect, nor hint,
based on geometric representation.



A delicate issue is here that in data
space a simplicial complex is not
necessarily a manifold. It is only if
the links of all k-vertices are
simplicial (k+1)-spheres (i.e., are
homeomorphic to spheres in Rk+1).
The difficulty resides in the feature
that n-spheres are straightforwardly
identifiable only

for n = 1, 2. The problem is
tractable for n = 3, 4 only in
exponential time and it is
undecidable for n ≥ 5.



S. Novikov, however, proved that for n ≥ 5 the only
further obstruction to the simplicial complex being a
manifold of given homotopy type is the surgery
obstruction : all finite simplicial complexes have the
homotopy type of manifolds with boundary.

This leads to expect that the combinatorially different
ways of sampling inequivalent structures in the
persistence process generate a natural probability
measure, consistent with data space invariants and
transformation properties.



Finally, besides Vietoris-Rips, Čech, witness or other
filtrations, used to implement persistence, another
filtration enters into play, Morse filtration.

For simplicial complexes that are manifolds, this is a
filtration by excursion sets; for the non-smooth,
discrete, intrinsic, metric-free version thereof, proper
to the wild simplicial complex that is data space, one
needs to recall that Morse theory generates
inequalities between (alternating sums of) Betti
numbers and the numbers of critical points of the
Morse function for each index (# of Hessian negative
eigenvalues):

bk ≤mk
b1 − b0 ≤m1 −m0

b2 − b1 + b0 ≤m2 −m1 + m0 · · ·



The Morse complex, built out of the critical points of a
Morse function with support on the vertices of the
simplicial complex, has the same homotopy as this
underlying structure.

Morse stratification, exactly like the Harder-
Narasimhan stratification, provides around the Morse
strata a negative normal bundle to the critical sets,
built, e.g., by the simplicial / combinatorial analog of
Hodge’s construction.

What relates Morse with homology is the property that
the number of critical points of index k of a function fM
is equal to the number of k cells in the simplicial
complex obtained climbing fM, that bears on bk.
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Morse



Morse homology, defined using a generic fM and the
local induced metric is a true topological invariant
(i.e., independent of the function and the metric), and
is isomorphic to singular homology : Morse and Betti
numbers encode the same information, yet Morse
numbers allow us to think of an underlying ‘manifold’.

Gromov’s spaces of bounded geometries provide a
natural framework for addressing the measure
questions posed by high-dimensional simplicial
geometry and establishing entropy estimates to
characterize the distribution of inequivalent
simplicial configurations.



This leads to the construction of a statistical field
theory of data, as the statistical features of GH
topology are fully determined by the homotopy types
of data space. Complexity and randomness of the
emerging structure here can be large, as the number
of coverings of a simplicial complex of bounded
geometry grows exponentially with the volume (≈
thermodynamic limit – swiss cheese çè foam ).

Yet, as growing filtrations of simplicial complexes
are more and more random, it is possible to extend
the notion of Gibbs field to the case where the
substrate is not a graph but a simplicial complex,
leading to a well defined statistical field theory.



Emerging scenario : the deep connection between the
simplicial complex structure of data space and the
information it encodedes resides in the property that
data can be partitioned in a variety of equivalence
classes, classified by their homotopy type, all elements
of each of which can be assumed to encode ‘similar’
information. Thus in X information behaves as a sort of
‘order parameter’.

A single object encompasses most of the information
about the global topological structure of X : P(z), the
Hilbert-Poincaré series, generating function of the
Betti numbers of S.

P(z) can be constructed through a field theory, as one
of the functors of the theory for an appropriate choice
of the field action.



A ‘Topological Field Theory’ of data space can be
constructed mimicking conventional TFT, though with
deep structural differences : discrete vs. continuous,
wild vs. tame, infinite vs. finite gauge group.

The ingredients for a TFT are:
i) a base space, M. The structure of M allows us to

do calculus with the appropriate type of field by
the vector bundle obtained attaching to each
point of M a fiber F;

ii) an action acting consistently over F;
iii) a ‘gauge’ group G.

Field equations are a ‘variational machine’ that takes
as input the symmetry constraint imposed by G-
invariance, and generates as output a field satisfying
that constraint. The field at a point of M is an element
of the fiber F that is now a G-bundle.



In view of the data space structure the construction
requires specific tools:

i. vector bundles. They are proper to the differential
category but have a PL category analogue, block
bundles, that allow us to reduce geometric and
transformation problems over simplicial complexes
to homotopy theory for the groups and complexes
involved. They provide a natural tool to construct
the moduli space of G-bundles in a discretized
setting.

Since the homotopy class of a map fully determines
its homology class, the simplicial block-bundle
construction furnishes all necessary tools to
compute, e.g., the Poincaré series.



ii. The (exponentiated) action. Needed to construct the
field theory propagators. A natural candidate is the
Heat Kernel K, but constructed with the intrinsic
combinatorial Laplacian over the simplicial complex.
The Heat Kernel’s trace gives the Poincaré series.

ii. gauge group G. Data space X is fully characterized
by its topological properties, then there is one
symmetry it has to satisfy: invariance under all
homeomorphisms of X that don’t change its topology
and are consistent with the constraints. G must then
be the semidirect product P∧GMC of the group P
associated with the characteristic process algebra
of the data set and GMC , the simplicial analog of the
mapping class group for X ( Diff / Diff0 ).



Using the block bundle approach for X and given G, all
topological invariants can be computed in the context
of the TDFT through the subsets of symmetries of G :

i) The cosets of G order data in equivalence classes
with respect to isotopy and canonical equivalence
under the process algebra P

i) The choice among the several possible theories
(actions) can be made unique by self-consistency,
comparing the coefficients of P(z) with the Betti
numbers outcome of the ‘phenomenological’
persistent homology analysis of data

i) Correlation functions of the resulting field theory
fully describe the pattern system in data space



An example : brain functions from MRI data

Some of the tools of TDFT were applied to compare
resting-state fMRI data of brain activity in a sample
of healthy volunteers half of whom infused a
placebo, the other half a psychoactive drug
(psilocybin).

The homological structure of the brain's functional
patterns undergoes a dramatic change due to
psilocybin, with a large number of transient
structures of low stability and of a small number of
highly stable ones, not observed in the placebo case.
The corresponding cycles (H1) indicate enhanced
brain functional integration under psilocybin as
compared to the normal resting-state.





The figures evidence the method’s capacity to
describe coexisting mesoscopic patterns at
various intensity scales, complementing the
information relative to the cluster structure of the
brain’s functional circuits.



Francisco 
Varela

Ambiguous pictures
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Connectomics

optimal functioning of
any brain is to balance
spatial integration and
segregation



Connection 
strengths

(shades of  gray; 
20 brain regions) 

Binarization (threshold)

Reordering and 
modularization

Brain Network



The data space splits into the direct sum of irreps of G.
The general ‘covariance matrix’ of a generic machine
learning algorithm becomes ‘block-diagonal’: all zeroes
are pushed to the upper-right / lower-left corners.



Topology and 
dimensions



D = 1



D = 2


