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Topology and Big Data
§ An important feature of modern science     

(and of society) is that a huge amount of data    
is produced at unprecedented rates: we 
recently passed the point where more data is 
collected than we can  physically store. 

§ Analogously, living matter must have the 
ability to handle data, in situations where the 
system is barely able to keep pace with the 
data produced. 
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Geometry and topology are very natural 
tools to handle large, high-dimensional, 
complex spaces of data: 

§ Qualitative information is relevant: the user 
aims to obtain knowledge, i.e., to understand 
how data is organized on large scale. Global, 
even though partly qualitative, information 
is needed.
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§ Metrics are not theoretically justified: in 
physics, phenomena support clean theories 
which tell exactly what metric to use, in 
biology this is much less clear. 

§ Coordinates are not natural: data is 
conveyed and received in the form of 
vectors, whose components are not natural 
in any sense. One should not consider 
properties of the data which depend on the 
choice of coordinates. 
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§ Summaries are more valuable than parameter 
choices: conventional method of handling data 
is building a graph whose vertex set is  a set of  
points (cloud) and two points are connected by 
an edge if their distance is ≤ e, then try to 
determine the optimal choice of ε. 
It is however much more informative to 
maintain the entire dendrogram, which gives  
at once a summary of the relevant features of 
the  clustering under all possible values of e . 
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We need to develop mechanisms to know 
how global features vary under changes    
of parameter.

The idea that emerges is that the methods  
to adopt should be inspired by topology:

§ Topology is the branch of mathematics 
which can deal with qualitative geometric 
information (connectivity, classification    
of loops and higher dimensional manifolds)  
in data space. 

10



§ Topology studies geometric properties in a 
way which is less sensitive to metrics than 
geometric methods: it ignores the value of 
distance functions and replaces it with the 
notion of connective nearness (proximity). 

§ Topology studies only properties of 
geometric objects which do not depend on 
the coordinates, but on intrinsic geometric 
features. It is coordinate-free. 
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§ Useful relationships in topology naturally 
involve continuous maps between the objects, 
hence are a manifestation of functoriality. 
Invariants should be related not just to 
objects, but also to maps between objects. 
Functoriality is central in algebraic topology 
because for homological invariants it permits 
their computation from local information. It 
reflects a categorical structure. 
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§ We argue that most information about 
topological spaces can be obtained through 
simplicial approximation: here piecewise 
linear, discrete realization of functoriality 
enters into play.

Þ There ensues the strategic process here  
proposed : 
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i) replace the (huge) set of points that constitute 
the space of data with a family of simplicial 
complexes, parametrized by a 'proximity 
parameter�, i.e., convert the data set into a 
global topological object; 

ii) handle topological complexes by the tools of 
algebraic topology, in particular the theory of 
persistent homology, characterized by a 
running parameter e ;

iii) encode  the persistent homology of data sets 
in a parameterized version of Betti numbers.



§ Data is typically represented by (unordered) 
sequences of points in some n-dimensional   
'space of data'. Correlation patterns of data 
provide the relevant information about the 
phenomena which data represents.
Point cloud data is a typical instance of data 
set for which such significant global features 
are present. 
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§ The conventional way to convert a collection 
of points in data space into a global object is to 
use the point cloud as vertex set of a graph Γ, 
whose edges are determined by proximity. 

§ Γ captures data connectivity, but ignores a 
wealth of higher order features, instead well  
discerned thinking of Γ as the scaffold of a 
higher-dimensional object: the simplicial 
complex – a PL space built from simple pieces 
(simplices) identified combinatorially along 
their faces – obtained by completion of Γ.
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The two most natural complexes are: 
i) the Čech complex [ k-simplices are 
unordered (k+1)-tuples of points whose      
e /2-ball neighborhoods have a point of 
intersection]. It has the homotopy type      
of the union of closed balls of radius e /2 
around the point set.
ii) the Rips complex [ k-simplices are 
unordered (k+1)-tuples of points pairwise 
within distance e ]. 
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§ The most important set of invariants of a 
topological space X, is its collection of 
homology groups, Hi(X). Basic ingredients 
for computing such groups are Betti 
numbers; the i-th Betti number, bi = bi(X)  
being the rank of Hi(X). 
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§ However, Betti numbers per se are not 
enough to decide which invariants are 
essential and which can be safely ignored. 

§ An additional notion must be introduced: 
homology persistence.
Given a parameterized family of spaces, it 
permits to identify those topological features 
which persist over a significant parameter 
range (to be considered as signals with 
short-lived features as noise). 
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§ In the evolution of the complex as it is 
constructed starting from the empty set and 
adding simplices, the progressive sequence  
of sub-complexes is referred to as filtration.

§ Aim of persistence homology is to measure 
the 'lifetime' of the topological properties of  
a simplicial complex under filtration. 

§ Finally, when the (asymptotic) stable 
complex is identified, patterns in data space 
are derived obtaining Morse numbers (in 
discrete context) from Betti numbers. 
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§ M       compact n-dimensional smooth manifold; 
§ f : M → R     smooth function over manifold M;
§ p Î M      critical point of f : in local coordinates  

around p 
∂f/∂x1 = · · · = ∂f/∂xn = 0 ;

§ p non degenerate : Hessian matrix H [elements
Hij = (∂2f /∂xi ∂xj) ] non-singular;   

§ for p non degenerate, Morse index of p = number 
of negative eigenvalues  of H at p. 

§ Morse function a smooth function f with only 
non-degenerate critical points 
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§ Morse Lemma  If p Î M is a non-degenerate 
critical point of f  then $ a  neigbourhood U,     
pÎ U, and local coordinates y1, . . . , yn such that
yi (p) = 0 and
f (q) = f (p) − y1(q)2 − · · · −yλ(q)2 + yλ+1(q)2 + · · ·  

· · · + yn(q)2 ,    " q Î U, 
where λ is the Morse index of f at p.
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§ Basic idea of Morse theory is that the homotopy 
type of submanifold Ma = {p Î M | f(p) ≤ a}
changes only at critical points of f.  If there is no 
critical value in [a, b], then gradient flow of f 
provides a diffeomorphism between Ma and Mb. 

§ At critical value a one can suppose, under small 
perturbation of f, that there is only one critical 
point p, f(p) = a. The result means that one can 
get Ma+e from Ma-e by attaching a handle Bλ, a 
cell of dimension of the index λ of f at the 
critical point. 
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§ This handle Bλ can be constructed via the 
description given by Morse Lemma and the 
attaching map is between ∂Bλ and Ma-e.

§ Using results of Whitehead in homotopy 
theory, the following theorem is proved: 

§ Theorem 1. If f is a Morse function on M
such that Ma is compact for each a Î R 
then M has the homotopy type of a cell 
complex with one λ-dimensional cell for 
each critical point of index λ.  
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§ If bk denotes the k-th Betti number of M, 
dimension of the (co)homology group Hk(M;R), 
and mk is the number of critical points of Morse 
function f with index k, then

§ Theorem 2. (Morse inequalities) bk ≤ mk. 
Moreover,

b0 £ m0

b1 − b0 ≤ m1 − m0

b2 − b1 + b0 ≤ m2 − m1 + m0

· · ·
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and

where c is Euler characteristic of M. 

This is a special case of a stronger form:
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in terms of Morse polynomial:

and Poincaré polynomial:

one may express Morse inequalities symbolically 
as M(t) ≥ P(t).



In this notation:

§ Theorem 3. Let f : M → R  be a Morse 
function, on a compact manifold M. Then

M(t) − P(t) = (1 + t)Q(t), 
for some   polynomial Q(t) such that Q(t) ≥ 0.
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§ Standard invariants were created to 
distinguish between things: it is their 
intrinsic definition that makes clear what 
kind of (manifest) properties they reflect.

§ But other invariants were instead 
discovered, whose construction, based on 
TQFT, provides information about purely 
topological properties we were unable to 
detect, nor even to hint.
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§ For example, the topological type of a 
smooth, closed, oriented surface S is fully 
determined by its genus g (º b1), which is 
but the number of handles of S. g is 
obtained from Euler number, the 
topological invariant χ = 2 - 2g, which can 
be easily evaluated upon tessellation of S 
by Euler's formula χ = V + F - E; with V= 
# Vertices; F = # Faces; E = # Edges. 
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The dreamer�s view
§ A symmetry over the space of quantum deforms   

of a finite-dimensional configuration manifold M, 
in the form of a quotient action of the 'motivic' 
Galois group has a non-trivial realization – linked 
with the action of GG-T over the extended moduli 
space of some generalized quantum field theories. 
These can be observed only when q is a root of 
unity, because then the center of Uq(sl2) is much 
more extended and is strongly non-trivial with 
respect to the case of generic q (and q=1).
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§ The depth of these rules has unimaginable reach. 
First, it implies that actually the whole 
supporting structure not only of living matter,  
but of nature itself as a whole, is affected by 
quantization by deformation. Even space and 
time themselves can no longer be thought of as 
an immutable stage over which events take place, 
because in turn they are directly involved in the 
process of quantization, which 'deforms' the 
structure that every classical observer intuitively 
attributes to them. 
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§ We claim that it is deformation by quantization of 
the finite-dimensional manifold ''ambient'' space of 
living matter which gives rise to the infinite-
dimensional space necessary to realize the action 
of GG-T. Also the algebra of periods of Tate is 
generated by this same process of quantization by 
deformation. Thus, even if a quantum computer 
(the automaton) is thought of as derived by a 
procedure of quantization by deformation of a  
classica model, the algebra of numbers physically 
'natural' for it is not ordinary arithmetic, but a 
wider structure, indeed just Pz.
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In a conventional quantum computer only rationals 
can be realized in a  natural way, but the periods of 
Pz emerge when an observer wants to probe non-
local sub-systems, namely verify the long-time 
behavior of the machine for all its possible types of 
input data, exploring its global topology. I.e., the 
'numbers' of Pz, which do not have any classical 
analogue, emerge from an operation similar to what 
computer scientists refer to as ''testing of the 
(quantum) software''. In the language of formal 
logics they belong to a meta-level, as they refer to 
tests of the computer performed from outside, not to 
the system itself. 
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§ In a conceptual scheme of this sort not only 
there is no contradiction with the perspective 
of quantum information, but the latter is 
encompassed in a much wider and more 
general structure: because also ''testing'' a 
device is, under any point of view, a possible, 
permitted and necessary physical procedure. 

§ One can finally thus concisely synthesize the 
perspectives derived from the framework 
discussed: 
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§ i) all physical systems, including living ones, 
must be representable ''in real time'' by a 
quantum computer (a quantum automaton) 
and, vice-versa, quantum computers should be  
describable as physical systems which realize 
the quantization by deformation of a classical 
machine; ii) observables of the (quantum) 
living physical world are those and only those 
which can be determined by the observation of 
quantum computers by quantum computers.        
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§ It is this set of dynamical properties, together 
with the structural ones characterizing the 
automaton, that arguably provide the 
complete conceptual reference frame to 
answer - giving a solution to the problem of a 
description consistent with quantum physics 
and complexity science of living matter, its 
properties and functions - the question posed 
at the beginning:
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There is no Frigate like a Book
To take us Lands away
Not any Coursers like a Page
Of prancing Poetry –
This Travel may the poorest take
Without oppress of Toll –
How frugal is the Chariot
that bears the Human soul.



Perception of an Object costs
Precise the Object’s loss –
Perception in itself a Gain
Replying to it’s Price –
The Object Absolute – is nought –
Perception sets it fair
And then upbraids a Perfectness
That situates so far –


